1
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{a}, \bar{b}$ and $\bar{c}$ be three vectors having magnitudes 1,1 and 2 respectively. If $\overline{\mathrm{a}} \times(\overline{\mathrm{a}} \times \overline{\mathrm{c}})+\overline{\mathrm{b}}=\overline{0}$, then the acute angle between $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ is

A
$\frac{\pi}{3}$
B
$\frac{\pi}{6}$
C
$\frac{\pi}{4}$
D
$\frac{\pi}{12}$
2
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $\overline{\mathrm{a}}$ and $\overline{\mathrm{c}}$ are unit vectors inclined at $\frac{\pi}{3}$ with each other and $(\overline{\mathrm{a}} \times(\overline{\mathrm{b}} \times \overline{\mathrm{c}})) \cdot(\overline{\mathrm{a}} \times \overline{\mathrm{c}})=5$, then the value of $5[\overline{\mathrm{a}} \overline{\mathrm{b}} \overline{\mathrm{c}}]=$

A
$-$10
B
10
C
50
D
$-$50
3
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $|\overline{\mathrm{a}}|=2,|\overline{\mathrm{~b}}|=3$ and $\overline{\mathrm{a}}, \overline{\mathrm{b}}$ are mutually perpendicular vectors, then the area of the triangle whose vertices are $0, a+2 b, a-2 b$ is

A
6 sq.units
B
12 sq.units
C
24 sq.units
D
8 sq.units
4
MHT CET 2024 10th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $\bar{A}, \bar{B}, \bar{C}$ be vectors of lengths 3 units, 4 units, 5 units respectively. let $\bar{A}$ be perpendicular to $\overline{\mathrm{B}}+\overline{\mathrm{C}}, \overline{\mathrm{B}}$ be perpendicular to $\overline{\mathrm{C}}+\overline{\mathrm{A}}$ and $\overline{\mathrm{C}}$ be perpendicular to $\bar{A}+\bar{B}$, then the length of vector $\overline{\mathrm{A}}+\overline{\mathrm{B}}+\overline{\mathrm{C}}$ is

A
$2 \sqrt{5}$
B
$\sqrt{30}$
C
$\sqrt{45}$
D
$5 \sqrt{2}$
MHT CET Subjects
EXAM MAP