1
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If the volume of the parallelopiped is $$158 \mathrm{~cu}$$. units whose coterminus edges are given by the vectors $$\bar{a}=(\hat{i}+\hat{j}+n \hat{k}), \bar{b}=2 \hat{i}+4 \hat{j}-n \hat{k}$$ and $$\bar{c}=\hat{i}+n \hat{j}+3 \hat{k}$$, where $$n \geq 0$$, then the value of $$n$$ is

A
8
B
$$\frac{19}{3}$$
C
7
D
19
2
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}, \bar{b}, \bar{c}$$ are three vectors such that $$\overline{\mathrm{a}} \cdot(\overline{\mathrm{b}}+\overline{\mathrm{c}})+\overline{\mathrm{b}} \cdot(\overline{\mathrm{c}}+\overline{\mathrm{a}})+\overline{\mathrm{c}} \cdot(\overline{\mathrm{a}}+\overline{\mathrm{b}})=0 \quad$$ and $$\quad|\overline{\mathrm{a}}|=1$$, $$|\bar{b}|=8$$ and $$|\bar{c}|=4$$, then $$|\bar{a}+\bar{b}+\bar{c}|$$ has the value _________.

A
81
B
9
C
5
D
4
3
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}$$ and $$\bar{b}=\hat{i}+\hat{j}$$. If $$\bar{c}$$ is a vector such that $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}=|\overline{\mathrm{c}}|,|\overline{\mathrm{c}}-\overline{\mathrm{a}}|=2 \sqrt{2}$$ and the angle between $$(\bar{a} \times \bar{b})$$ and $$\bar{c}$$ is $$\frac{\pi}{6}$$, then $$|(\bar{a} \times \bar{b}) \times \bar{c}|$$ is

A
$$\frac{3}{2}$$
B
$$\frac{2}{3}$$
C
1
D
$$\frac{3}{4}$$
4
MHT CET 2023 11th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

If $$\quad \overline{\mathrm{a}}=\hat{\mathrm{i}}+\hat{\mathrm{j}}, \quad \overline{\mathrm{b}}=2 \hat{\mathrm{j}}-\hat{\mathrm{k}} \quad$$ and $$\quad \overline{\mathrm{r}} \times \overline{\mathrm{a}}=\overline{\mathrm{b}} \times \overline{\mathrm{a}}, \overline{\mathrm{r}} \times \overline{\mathrm{b}}=\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$, then the value $$\frac{\overline{\mathrm{r}}}{|\overline{\mathrm{r}}|}$$ is

A
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
B
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}+\hat{\mathrm{k}}}{\sqrt{11}}$$
C
$$\frac{\hat{\mathrm{i}}-3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
D
$$\frac{\hat{\mathrm{i}}+3 \hat{\mathrm{j}}-\hat{\mathrm{k}}}{\sqrt{11}}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12