1
MHT CET 2023 12th May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\overline{\mathrm{u}}, \overline{\mathrm{v}}, \overline{\mathrm{w}}$$ are three vectors such that $$|\overline{\mathrm{u}}|=1, |\bar{v}|=2,|\bar{w}|=3$$. If the projection of $$\bar{v}$$ along $$\bar{u}$$ is equal to projection of $$\bar{w}$$ along $$\bar{u}$$ and $$\bar{v}, \bar{w}$$ are perpendicular to each other, then $$|\bar{u}-\bar{v}+\bar{w}|=$$

A
4
B
$$\sqrt{7}$$
C
$$\sqrt{14}$$
D
2
2
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $$\bar{a}=\hat{i}+4 \hat{j}+2 \hat{k}, \bar{b}=3 \hat{i}-2 \hat{j}+7 \hat{k}, \bar{c}=2 \hat{i}-\hat{j}+4 \hat{k}$$, then a vector $$\overline{\mathrm{d}}$$ which is parallel to vector $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ and which $$\overline{\mathrm{c}} \cdot \overline{\mathrm{d}}=15$$, is

A
$$30 \hat{i}-\hat{j}-14 \hat{k}$$
B
$$90 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}-42 \hat{\mathrm{k}}$$
C
$$90 \hat{\mathrm{i}}+\hat{\mathrm{j}}-7 \hat{\mathrm{k}}$$
D
$$30 \hat{\mathrm{i}}-3 \hat{\mathrm{j}}+7 \hat{\mathrm{k}}$$
3
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

The unit vector perpendicular to each of the vectors $$\bar{a}+\bar{b}$$ and $$\bar{a}-\bar{b}$$, where $$\bar{a}=\hat{i}+\hat{j}+\hat{k}$$ and $$\overline{\mathrm{b}}=3 \hat{\mathrm{i}}-2 \hat{\mathrm{j}}+5 \hat{\mathrm{k}}$$ is

A
$$\frac{-14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
B
$$\frac{14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
C
$$\frac{14 \hat{\mathrm{i}}+4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
D
$$\frac{-14 \hat{\mathrm{i}}-4 \hat{\mathrm{j}}+10 \hat{\mathrm{k}}}{\sqrt{312}}$$
4
MHT CET 2023 11th May Evening Shift
MCQ (Single Correct Answer)
+2
-0

Let $$\bar{a}=2 \hat{i}+\hat{j}-2 \hat{k}, \bar{b}=\hat{i}+\hat{j}$$ and $$\bar{c}$$ be a vector such that $$|\bar{c}-\bar{a}|=4,|(\bar{a} \times \bar{b}) \times \bar{c}|=3$$ and the angle between $$\overline{\mathrm{c}}$$ and $$\overline{\mathrm{a}} \times \overline{\mathrm{b}}$$ is $$\frac{\pi}{6}$$, then $$\overline{\mathrm{a}} \cdot \overline{\mathrm{c}}$$ is equal to

A
$$-3$$
B
$$\frac{3}{2}$$
C
3
D
$$\frac{-3}{2}$$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12