1
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
The circuit shown in figure, with $$R = 1/3\Omega $$, $$L = 1/4H$$, $$C = 3F$$ has input voltage $$v\left( t \right) = \sin \,2t$$. The resulting current $$i(t)$$ is GATE ECE 2004 Network Theory - Sinusoidal Steady State Response Question 39 English
A
$$5\,\sin \left( {2t + {{53.1}^0}} \right)$$
B
$$5\,\sin \left( {2t - {{53.1}^0}} \right)$$
C
$$25\,\sin \left( {2t + {{53.1}^0}} \right)$$
D
$$25\,\sin \left( {2t - {{53.1}^0}} \right)$$
2
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
For the circuit shown in figure, the time constant $$RC = 1$$ $$ms$$. The input voltage is $${v_i}\left( t \right) = \sqrt 2 \,\sin \,{10^3}t$$. The output voltage $${v_0}\left( t \right)$$ is equal to GATE ECE 2004 Network Theory - Sinusoidal Steady State Response Question 38 English
A
$$\sin \left( {{{10}^3}t - {{45}^0}} \right)$$
B
$$\sin \left( {{{10}^3}t + {{45}^0}} \right)$$
C
$$\sin \left( {{{10}^3}t - {{53}^0}} \right)$$
D
$$\sin \left( {{{10}^3}t + {{53}^0}} \right)$$
3
GATE ECE 2003
MCQ (Single Correct Answer)
+1
-0.3
A series RLC circuit has a resonance frequency of 1 kHz and a quality factor Q = 100. If each R, L and C is doubled from its original value, the new Q of the circuit is
A
25
B
50
C
100
D
200
4
GATE ECE 2000
MCQ (Single Correct Answer)
+1
-0.3
The circuit of Fig. represents a GATE ECE 2000 Network Theory - Sinusoidal Steady State Response Question 64 English
A
Low pass filter
B
High pass filter
C
Band pass filter
D
Band reject filter
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12