1
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
A DC voltage source is connected across a series R-L-C circuit. Under steady-state conditions, the applied DC voltage drops entirely across the
2
GATE ECE 1995
MCQ (Single Correct Answer)
+1
-0.3
The current $$i(t)$$ through a $$10$$-$$\Omega $$ resistor in series with an inductance is given by
$$i(t)$$$$ = 3 + 4\sin \left( {100t + {{45}^ \circ }} \right) + 4\sin \left( {300t + {{60}^ \circ }} \right)\,\,A$$.
$$i(t)$$$$ = 3 + 4\sin \left( {100t + {{45}^ \circ }} \right) + 4\sin \left( {300t + {{60}^ \circ }} \right)\,\,A$$.
The RMS value of the current and the power dissipated in the circuit are
3
GATE ECE 1995
Fill in the Blanks
+1
-0
A series $$R$$-$$L$$-$$C$$ circuit has a $$Q$$ of $$100$$ and an impedance of $$\left( {100 + j0} \right)\,\Omega $$ at its resonant angular frequency of $${10^7}$$ rad/sec. The values of $$R$$ and $$L$$ are: $$R=$$ ______ ohms. $$L=$$ ________Henries.
4
GATE ECE 1994
MCQ (Single Correct Answer)
+1
-0.3
A series LCR circuit consisting of $$R = 10\Omega $$, $$\left| {{X_L}} \right|\,\,\, = 20\Omega $$ and $$\left| {{X_C}} \right|\,\,\, = 20\Omega $$, is connected across an a.c. supply of $$200V$$ rms. The rms voltage across the capacitor is
Questions Asked from Sinusoidal Steady State Response (Marks 1)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2023 (1)
GATE ECE 2017 Set 1 (1)
GATE ECE 2017 Set 2 (1)
GATE ECE 2016 Set 2 (1)
GATE ECE 2016 Set 3 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (1)
GATE ECE 2015 Set 3 (1)
GATE ECE 2010 (1)
GATE ECE 2007 (1)
GATE ECE 2005 (1)
GATE ECE 2004 (2)
GATE ECE 2003 (1)
GATE ECE 2000 (1)
GATE ECE 1998 (1)
GATE ECE 1996 (2)
GATE ECE 1995 (4)
GATE ECE 1994 (1)
GATE ECE 1993 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics