1
GATE ECE 2007
MCQ (Single Correct Answer)
+1
-0.3
The RC circuit shown in the figure is

GATE ECE 2007 Network Theory - Sinusoidal Steady State Response Question 62 English
A
a low-pass filter
B
a high-pass filter
C
a band-pass filter
D
a band-reject filter
2
GATE ECE 2005
MCQ (Single Correct Answer)
+1
-0.3
In a series $$RLC$$ circuit $$R = 2\,k\Omega ,\,\,\,L = \,1H$$ and $$C = \,1/400\,\mu F.$$ The resonant frequency is
A
$$2 \times {10^4}\,Hz$$
B
$${1 \over \pi } \times {10^4}\,Hz$$
C
$${10^4}\,Hz$$
D
$$2\pi \times {10^4}\,Hz$$
3
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
The circuit shown in figure, with $$R = 1/3\Omega $$, $$L = 1/4H$$, $$C = 3F$$ has input voltage $$v\left( t \right) = \sin \,2t$$. The resulting current $$i(t)$$ is GATE ECE 2004 Network Theory - Sinusoidal Steady State Response Question 39 English
A
$$5\,\sin \left( {2t + {{53.1}^0}} \right)$$
B
$$5\,\sin \left( {2t - {{53.1}^0}} \right)$$
C
$$25\,\sin \left( {2t + {{53.1}^0}} \right)$$
D
$$25\,\sin \left( {2t - {{53.1}^0}} \right)$$
4
GATE ECE 2004
MCQ (Single Correct Answer)
+1
-0.3
For the circuit shown in figure, the time constant $$RC = 1$$ $$ms$$. The input voltage is $${v_i}\left( t \right) = \sqrt 2 \,\sin \,{10^3}t$$. The output voltage $${v_0}\left( t \right)$$ is equal to GATE ECE 2004 Network Theory - Sinusoidal Steady State Response Question 38 English
A
$$\sin \left( {{{10}^3}t - {{45}^0}} \right)$$
B
$$\sin \left( {{{10}^3}t + {{45}^0}} \right)$$
C
$$\sin \left( {{{10}^3}t - {{53}^0}} \right)$$
D
$$\sin \left( {{{10}^3}t + {{53}^0}} \right)$$
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12