1
GATE ECE 2017 Set 1
Numerical
+1
-0
In the circuit shown, the positive angular frequency $$\omega$$ (in radians per second) at which magnitude of the phase difference between the voltages $$V_1$$ and $$V_2$$ equals $$\frac{\mathrm\pi}4$$ radians, is __________. GATE ECE 2017 Set 1 Network Theory - Sinusoidal Steady State Response Question 59 English
Your input ____
2
GATE ECE 2017 Set 2
Numerical
+1
-0
In the circuit shown, $$V$$ is a sinusoidal voltage source. The current $$I$$ is in phase with voltage $$V$$. The ratio $${{{\rm{Amplitude of voltage across the capacitor }}} \over {{\rm{Amplitude of voltage across the resistor }}}}$$ is ______. GATE ECE 2017 Set 2 Network Theory - Sinusoidal Steady State Response Question 32 English
Your input ____
3
GATE ECE 2016 Set 2
Numerical
+1
-0
The figure shows an $$RLC$$ circuit with a sinusoidal current source. GATE ECE 2016 Set 2 Network Theory - Sinusoidal Steady State Response Question 34 English

At response, the ratio $$\left| {{{\rm I}_L}} \right|/\left| {{{\rm I}_R}} \right|$$, i.e., the ratio of the magnitudes of the inductor current phasor and the resistor current phasor, is _________.

Your input ____
4
GATE ECE 2016 Set 3
MCQ (Single Correct Answer)
+1
-0.3
In the $$RLC$$ circuit shown in the figure, the input voltage is given by vi(t) = 2 cos(200t)+4 sin(500t). The output voltage v0(t) is GATE ECE 2016 Set 3 Network Theory - Sinusoidal Steady State Response Question 33 English
A
cos(200t) + 2 sin(500t)
B
2cos(200t) + 4 sin(500t)
C
sin(200t) + 2 cos(500t)
D
2sin(200t) + 4 cos(500t)
GATE ECE Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12