1
GATE ECE 2023
Numerical
+2
-0
In a semiconductor device, the Fermi-energy level is 0.35 eV above the valence band energy. The effective density of states in the valence band at T = 300 K is 1 $$\times$$ 10$$^{19}$$ cm$$^{-3}$$. The thermal equilibrium hole concentration in silicon at 400 K is _____________ $$\times$$ 10$$^{13}$$ cm$$^{-3}$$ (rounded off to two decimal places).
Given kT at 300 K is 0.026 eV.
Your input ____
2
GATE ECE 2022
MCQ (More than One Correct Answer)
+2
-0
Select the CORRECT statements regarding semiconductor devices
3
GATE ECE 2017 Set 1
Numerical
+2
-0
The dependence of drift velocity of electrons on electric field in a semiconductor is shown
below. The semiconductor has a uniform electron concentration of n = 1x1016 $$cm^{-3}$$ and electronic charge q = 1.6x10-19 C. If a bias of 5V is applied across a 1 $$\mu$$m region of this
semiconductor, the resulting current density in this region, in kA/cm2, is _________.
Your input ____
4
GATE ECE 2015 Set 2
Numerical
+2
-0
A dc voltage of 10V is applied across an n–type silicon bar having a rectangular cross–section
and a length of 1cm as shown in figure. The donor doping concentration ND and the mobility of electrons $$\mu$$n are $$10^{16}$$ cm-3 and 1000 cm2 V-1s-1, respectively. The average time (in $$\mu$$s)
taken by the electrons to move from one end of the bar to other end is _______________.
Your input ____
Questions Asked from Semiconductor Physics (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics