1

GATE ECE 2022

MCQ (Single Correct Answer)

+1

-0.33

Consider a closed-loop control system with unity negative feedback and KG(s) in the forward path, where the gain K = 2. The complete Nyquist plot of the transfer function G(s) is shown in the figure. Note that the Nyquist contour has been chosen to have the clockwise sense. Assume G(s) has no poles on the closed right-half of the complex plane. The number of poles of the closed-loop transfer function in the closed right-half of the complex plane is ___________.

2

GATE ECE 2016 Set 2

MCQ (Single Correct Answer)

+1

-0.3

The number and direction of encirclements around the point −1 + j0 in the complex plane by the
Nyquist plot of G(s) =$${{1 - s} \over {4 + 2s}}$$ is

3

GATE ECE 2016 Set 1

MCQ (Single Correct Answer)

+1

-0.3

A closed-loop control system is stable if the Nyquist plot of the corresponding open-loop transfer
function

4

GATE ECE 2015 Set 3

Numerical

+1

-0

The phase margin (in degrees) of the system
G(s)=$${{10} \over {\left( {s + 10} \right)}}$$ is ___________.

Your input ____

Questions Asked from Frequency Response Analysis (Marks 1)

Number in Brackets after Paper Indicates No. of Questions

GATE ECE 2022 (1)
GATE ECE 2016 Set 2 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2015 Set 3 (2)
GATE ECE 2015 Set 1 (1)
GATE ECE 2014 Set 4 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (1)
GATE ECE 2012 (1)
GATE ECE 2011 (1)
GATE ECE 2010 (2)
GATE ECE 2007 (1)
GATE ECE 2006 (2)
GATE ECE 2005 (1)
GATE ECE 2003 (2)
GATE ECE 2002 (1)
GATE ECE 2001 (1)
GATE ECE 1999 (2)
GATE ECE 1998 (2)
GATE ECE 1995 (1)
GATE ECE 1994 (2)

GATE ECE Subjects

Network Theory

Control Systems

Electronic Devices and VLSI

Analog Circuits

Digital Circuits

Microprocessors

Signals and Systems

Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous

Communications

Electromagnetics

General Aptitude