1
GATE ECE 2010
+1
-0.3
A system with the transfer function $${{Y(s)} \over {X(s)}} = {s \over {s + p}},$$ has an output y(t)=$$\cos \left( {2t - {\pi \over 3}} \right),$$ for input signal x(t)=$$p\cos \left( {2t - {\pi \over 2}} \right).$$ Then the system parameter 'p' is
A
$$\sqrt 3$$
B
$${2 \over {\sqrt 3 }}$$
C
1
D
$${{\sqrt 3 } \over 2}$$
2
GATE ECE 2007
+1
-0.3
If the closed-loop transfer function of a control system is given as T(s)=$${{s - 5} \over {(s + 2)(s + 3)}},$$ then it is
A
an unstable system
B
an uncontrollable system
C
a minimum phase system
D
a non-minimum phase system
3
GATE ECE 2006
+1
-0.3
The open-loop transfer function of a unity-gain feedback control system is given by $$G(s) = {K \over {(s + 1)(s + 2)}},$$ the gain margin of the system in dB is given by
A
0
B
1
C
20
D
$$\infty$$
4
GATE ECE 2006
+1
-0.3
In the system shown below, x(t)=(sin t). In steady-state, the response y(t) will be
A
$${1 \over {\sqrt 2 }}\sin \left( {t - {\pi \over 4}} \right)$$
B
$${1 \over {\sqrt 2 }}\sin \left( {t + {\pi \over 4}} \right)$$
C
$${1 \over {\sqrt 2 }}{e^{ - t}}\sin t$$
D
$$\sin t - \cos t$$
EXAM MAP
Medical
NEET