1
GATE ECE 1993
MCQ (Single Correct Answer)
+2
-0.6
A material is described by the following electrical parameters at a frequency of $$10$$ GHz is $$\sigma = {10^6}$$ mho/m, $$\mu = {\mu _0},$$ and $$ \in /{ \in _0} = 10.$$ The material at this frequency is considered to be $$\left( {{ \in _0} = {1 \over {36\,\,\pi }} \times {{10}^{ - 9}}\,\,F/m} \right)$$
2
GATE ECE 1991
MCQ (More than One Correct Answer)
+2
-0
The electric field component of a uniform plane electromagnetic wave propagating in the $$Y$$-direction in a lossless medium will satisfy the equation
3
GATE ECE 1989
MCQ (Single Correct Answer)
+2
-0.6
The skin - depth of copper at a frequency of $$3 GHz$$ is $$1$$ micron ($${{{10}^{ - 6}}}$$ metre). At $$12 GHz$$, for a non - magnetic conductor whose conductivity is $$1/9$$ times that of copper, the skin $$-$$ depth would be
4
GATE ECE 1988
MCQ (Single Correct Answer)
+2
-0.6
In a good conductor the phase relation between the tangential components of electric field Et and the magnetic field Ht is as follows
Questions Asked from Uniform Plane Waves (Marks 2)
Number in Brackets after Paper Indicates No. of Questions
GATE ECE 2024 (1)
GATE ECE 2023 (2)
GATE ECE 2017 Set 1 (1)
GATE ECE 2016 Set 1 (1)
GATE ECE 2015 Set 2 (1)
GATE ECE 2015 Set 1 (2)
GATE ECE 2014 Set 3 (2)
GATE ECE 2014 Set 2 (1)
GATE ECE 2014 Set 1 (1)
GATE ECE 2013 (2)
GATE ECE 2011 (1)
GATE ECE 2010 (1)
GATE ECE 2008 (1)
GATE ECE 2007 (1)
GATE ECE 2006 (3)
GATE ECE 2004 (1)
GATE ECE 2003 (3)
GATE ECE 2002 (2)
GATE ECE 2001 (1)
GATE ECE 2000 (1)
GATE ECE 1996 (2)
GATE ECE 1993 (2)
GATE ECE 1991 (1)
GATE ECE 1989 (1)
GATE ECE 1988 (1)
GATE ECE 1987 (1)
GATE ECE Subjects
Signals and Systems
Representation of Continuous Time Signal Fourier Series Fourier Transform Continuous Time Signal Laplace Transform Discrete Time Signal Fourier Series Fourier Transform Discrete Fourier Transform and Fast Fourier Transform Discrete Time Signal Z Transform Continuous Time Linear Invariant System Discrete Time Linear Time Invariant Systems Transmission of Signal Through Continuous Time LTI Systems Sampling Transmission of Signal Through Discrete Time Lti Systems Miscellaneous
Network Theory
Control Systems
Digital Circuits
General Aptitude
Electronic Devices and VLSI
Analog Circuits
Engineering Mathematics
Microprocessors
Communications
Electromagnetics