1

IIT-JEE 2010 Paper 1 Offline

MCQ (Single Correct Answer)
The circle $${x^2} + {y^2} - 8x = 0$$ and hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ intersect at the points $$A$$ and $$B$$.

Equation of a common tangent with positive slope to the circle as well as to the hyperbola is

A
$$2x - \sqrt {5y} - 20 = 0$$
B
$$2x - \sqrt {5y} + 4 = 0$$
C
$$3x - 4y + 8 = 0$$
D
$$4x - 3y + 4 = 0$$

Explanation

A tangent to $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ is

$$y = mx + \sqrt {9{m^2} - 4} ,\,m > 0$$ .... (1)

A tangent to $${(x - 4)^2} + {y^2} = 16$$ is

$$xy = m(x - 4) + 4\sqrt {1 + {m^2}} $$ ..... (2)

Comparing (1) and (2),

$$\sqrt {9{m^2} - 4} = - 4m + 4\sqrt {1 + {m^2}} \Rightarrow \sqrt {9 - {4 \over {{m^2}}}} = - 4 + 4\sqrt {1 + {1 \over {{m^2}}}} $$

Let $${1 \over {{m^2}}} = t$$, we have $$\sqrt {9 - 4t} = - 4 + 4\sqrt {1 + t} $$

Squaring, we have

$$ \Rightarrow 9 - 4t = 16 + 16(1 + t) - 32\sqrt {1 + t} \Rightarrow 32\sqrt {1 + t} = 23 + 20t$$

Again squaring $$1024(1 + t) = 529 + 920t + 400{t^2}$$

$$ \Rightarrow 400{t^2} - 104t - 495 = 0 \Rightarrow t = {5 \over 4}$$

Thus $${m^2} = {4 \over 5},\,m = {2 \over {\sqrt 5 }}$$

The tangent is $$y = {2 \over {\sqrt 5 }}x + {4 \over {\sqrt 5 }}$$ i.e. $$2x - \sqrt 5 y + 4 = 0$$

2

IIT-JEE 2009

MCQ (Single Correct Answer)
The locus of the orthocentre of the triangle formed by the lines $$$\left( {1 + p} \right)x - py + p\left( {1 + p} \right) = 0,$$$ $$$\left( {1 + q} \right)x - qy + q\left( {1 + q} \right) = 0,$$$
and $$y=0$$, where $$p \ne q,$$ is
A
a hyperbola
B
a parabola
C
an ellipse
D
a straight line
3

IIT-JEE 2009

MCQ (Single Correct Answer)
The normal at a point $$P$$ on the ellipse $${x^2} + 4{y^2} = 16$$ meets the $$x$$- axis $$Q$$. If $$M$$ is the mid point of the line segment $$PQ$$, then the locus of $$M$$ intersects the latus rectums of the given ellipse at the points
A
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm {2 \over 7}} \right)$$
B
$$\left( { \pm {{3\sqrt 5 } \over 2},\, \pm \sqrt {{{19} \over 4}} } \right)$$
C
$$\left( { \pm 2\sqrt 3 , \pm {1 \over 7}} \right)$$
D
$$\left( { \pm 2\sqrt 3 , \pm {{4\sqrt 3 } \over 7}} \right)$$
4

IIT-JEE 2009

MCQ (Single Correct Answer)
The line passing through the extremity $$A$$ of the major axis and extremity $$B$$ of the minor axis of the ellipse $${x^2} + 9{y^2} = 9$$ meets its auxiliary circle at the point $$M$$. Then the area of the triangle with vertices at $$A$$, $$M$$ and the origin $$O$$ is
A
$${{31} \over {10}}$$
B
$${{29} \over {10}}$$
C
$${{21} \over {10}}$$
D
$${{27} \over {10}}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12