NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If the line $$62x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4$$, then the point of contact is
A
$$\left( { - 2,\,\sqrt 6 } \right)$$
B
$$\left( { - 5,\,2\sqrt 6 } \right)$$
C
$$\left( {{1 \over 2},{1 \over {\sqrt 6 }}} \right)$$
D
$$\left( {4, - \,\sqrt 6 } \right)$$
2

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
If tangents are drawn to the ellipse $${x^2} + 2{y^2} = 2,$$ then the locus of the mid-point of the intercept made by the tangents between the coordinate axes is
A
$${1 \over {2{x^2}}} + {1 \over {4{y^2}}} = 1$$
B
$${1 \over {4{x^2}}} + {1 \over {2{y^2}}} = 1$$
C
$${{{x^2}} \over 2} + {{{y^2}} \over 4} = 1$$
D
$${{{x^2}} \over 4} + {{{y^2}} \over 2} = 1$$
3

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
The angle between the tangents drawn from the point $$(1, 4)$$ to the parabola $${y^2} = 4x$$ is
A
$$\pi /6$$
B
$$\pi /4$$
C
$$\pi /3$$
D
$$\pi /2$$
4

IIT-JEE 2003 Screening

MCQ (Single Correct Answer)
The focal chord to $${y^2} = 16x$$ is tangent to $${\left( {x - 6} \right)^2} + {y^2} = 2,$$ then the possible values of the slope of the chord, are
A
$$\left\{ { - 1,\,1} \right\}$$
B
$$\left\{ { - 2,\,2} \right\}$$
C
$$\left\{ { - 2,\,-1/2} \right\}$$
D
$$\left\{ { 2,\,-1/2} \right\}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12