1
IIT-JEE 2004 Screening
MCQ (Single Correct Answer)
+2
-0.5
If the line $$62x + \sqrt 6 y = 2$$ touches the hyperbola $${x^2} - 2{y^2} = 4$$, then the point of contact is
A
$$\left( { - 2,\,\sqrt 6 } \right)$$
B
$$\left( { - 5,\,2\sqrt 6 } \right)$$
C
$$\left( {{1 \over 2},{1 \over {\sqrt 6 }}} \right)$$
D
$$\left( {4, - \,\sqrt 6 } \right)$$
2
IIT-JEE 2003 Screening
MCQ (Single Correct Answer)
+2
-0.5
For hyperbola $${{{x^2}} \over {{{\cos }^2}\alpha }} - {{{y^2}} \over {{{\sin }^2}\alpha }} = 1$$ which of the following remains constant with change in $$'\alpha '$$
A
abscissae of vertices
B
abscissae of foci
C
eccentricity
D
directrix
3
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
If $$x$$ $$=$$ $$9$$ is the chord of contact of the hyperbola $${x^2} - {y^2} = 9,$$ then the equation of the vcorresponding pair of tangents is
A
$$9{x^2} - 8{y^2} + 18x - 9 = 0$$
B
$$9{x^2} - 8{y^2} - 18x + 9 = 0$$
C
$$9{x^2} - 8{y^2} - 18x - 9 = 0$$
D
$$9{x^2} - 8{y^2} + 18x + 9 = 0$$
4
IIT-JEE 1999
MCQ (Single Correct Answer)
+2
-0.5
Let $$P$$ $$\left( {a\,\sec \,\theta ,\,\,b\,\tan \theta } \right)$$ and $$Q$$ $$\left( {a\,\sec \,\,\phi ,\,\,b\,\tan \,\phi } \right)$$, where $$\theta + \phi = \pi /2,$$, be two points on the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$.

If $$(h, k)$$ is the point of intersection of the normals at $$P$$ and $$Q$$, then $$k$$ is equal to

A
$${{{a^2} + {b^2}} \over a}$$
B
$$ - \left( {{{{a^2} + {b^2}} \over a}} \right)$$
C
$${{{a^2} + {b^2}} \over b}$$
D
$$ - \left( {{{{a^2} + {b^2}} \over b}} \right)$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12