Tangents are drawn from any point on the hyperbola $${{{x^2}} \over 9} - {{{y^2}} \over 4} = 1$$ to the circle $${x^2} + {y^2} = 9$$.Find the locus of mid-point of the chord of contact.
Tangent is drawn to parabola $${y^2} - 2y - 4x + 5 = 0$$ at a point $$P$$ which cuts the directrix at the point $$Q$$. $$A$$ point $$R$$ is such that it divides $$QP$$ externally in the ratio $$1/2:1$$. Find the locus of point $$R$$
Normals are drawn from the point $$P$$ with slopes $${m_1}$$, $${m_2}$$, $${m_3}$$ to the parabola $${y^2} = 4x$$. If locus of $$P$$ with $${m_1}$$ $${m_2}$$$$ = \alpha $$ is a part of the parabola itself then find $$\alpha $$.
Answer
$$a=2$$
4
IIT-JEE 2002
Subjective
Prove that, in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
Answer
Solve it.
Questions Asked from Conic Sections
On those following papers in Subjective
Number in Brackets after Paper Indicates No. of Questions