1
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
Suppose that the foci of the ellipse $${{{x^2}} \over 9} + {{{y^2}} \over 5} = 1$$ are $$\left( {{f_1},0} \right)$$ and $$\left( {{f_2},0} \right)$$ where $${{f_1} > 0}$$ and $${{f_2} < 0}$$. Let $${P_1}$$ and $${P_2}$$ be two parabolas with a common vertex at $$(0,0)$$ and with foci at $$\left( {{f_1},0} \right)$$ and $$\left( 2{{f_2},0} \right)$$, respectively. Let $${T_1}$$ be a tangent to $${P_1}$$ which passes through $$\left( 2{{f_2},0} \right)$$ and $${T_2}$$ be a tangent to $${P_2}$$ which passes through $$\left( {{f_1},0} \right)$$. If $${m_1}$$ is the slope of $${T_1}$$ and $${m_2}$$ is the slope of $${T_2}$$, then the value of $$\left( {{1 \over {m_1^2}} + m_2^2} \right)$$ is
2
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
If the normals of the parabola $${y^2} = 4x$$ drawn at the end points of its latus rectum are tangents to the circle $${\left( {x - 3} \right)^2} + {\left( {y + 2} \right)^2} = {r^2}$$, then the value of $${r^2}$$ is
3
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
Let the curve $$C$$ be the mirror image of the parabola $${y^2} = 4x$$ with respect to the line $$x+y+4=0$$. If $$A$$ and $$B$$ are the points of intersection of $$C$$ with the line $$y=-5$$, then the distance between $$A$$ and $$B$$ is
4
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
A vertical line passing through the point $$(h,0)$$ intersects the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$ at the points $$P$$ and $$Q$$. Let the tangents to the ellipse at $$P$$ and $$Q$$ meet at the point $$R$$. If $$\Delta \left( h \right)$$$$=$$ area of the triangle $$PQR$$, $${{\Delta _1}}$$ $$= \mathop {\max }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$ and $${{\Delta _2}}$$ $$= \mathop {\min }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$, then $${8 \over {\sqrt 5 }}{\Delta _1} - 8{\Delta _2} =$$