1
IIT-JEE 2010 Paper 1 Offline
MCQ (More than One Correct Answer)
+3
-0

Let $z_1$ and $z_2$ be two distinct complex numbers let $z=(1-t) z_1+t z_2$ for some real number t with $0 < t < 1$.

If $\operatorname{Arg}(w)$ denotes the principal argument of a nonzero complex number $w$, then :

A
$\left|z-z_1\right|+\left|z-z_2\right|=\left|z_1-z_2\right|$
B
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z-z_2\right)$
C
$\left|\begin{array}{cc}z-z_1 & \bar{z}-\bar{z}_1 \\ z_2-z_1 & \bar{z}_2-\bar{z}_1\end{array}\right|=0$
D
$\operatorname{Arg}\left(z-z_1\right)=\operatorname{Arg}\left(z_2-z_1\right)$
2
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
If $$\,\left| {\matrix{ {6i} & { - 3i} & 1 \cr 4 & {3i} & { - 1} \cr {20} & 3 & i \cr } } \right| = x + iy$$ , then
A
x = 3, y = 2
B
x = 1, y = 3
C
x = 0, y = 3
D
x = 0, y = 0
3
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
The value of the sum $$\,\,\sum\limits_{n = 1}^{13} {({i^n}} + {i^{n + 1}})$$ , where i = $$\sqrt { - 1} $$, equals
A
i
B
i - 1
C
- i
D
0
4
IIT-JEE 1998
MCQ (More than One Correct Answer)
+2
-0.5
If $${\omega}$$ is an imaginary cube root of unity, then $${(1\, + \omega \, - {\omega ^2})^7}$$ equals
A
$$128\omega $$
B
$$ - 128\omega $$
C
$$128{\omega ^2}$$
D
$$ - 128{\omega ^2}$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12