1

IIT-JEE 2010 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $${{z_1}}$$ and $${{z_2}}$$ be two distinct complex number and let z =( 1 - t)$${{z_1}}$$ + t$${{z_2}}$$ for some real number t with 0 < t < 1. IfArg (w) denote the principal argument of a non-zero complex number w, then
A
$$\left| {z - {z_1}} \right| + \left| {z - {z_2}} \right| = \left| {{z_1} - {z_2}} \right|$$
B
Arg $$(z - {z_1})$$ = Arg$$(z - {z_2})$$
C
$$\left| {\matrix{ {z - {z_1}} & {\overline z - {{\overline z }_1}} \cr {{z_2} - {z_1}} & {{{\overline z }_2} - {{\overline z }_1}} \cr } } \right|$$ = 0
D
Arg $$(z - {z_1})$$ = Arg$$({z_2} - {z_1})$$

Explanation

Given, $$z = {{(1 - t){z_1} + t\,{z_2}} \over {(1 - t) + t}}$$

Clearly, z divides z1 and z2 in the ratio of t : (1 $$-$$ t), 0 < t < 1

$$\Rightarrow$$ AP + BP = AB

i.e., $$|z - {z_1}| + |z - {z_2}| = |{z_1} - {z_2}|$$

$$\Rightarrow$$ Option (a) is true.

and $$\arg (z - {z_1}) = \arg ({z_2} - z) = \arg ({z_2} - {z_1})$$

$$\Rightarrow$$ (b) is false and (d) is true.

Also, $$\arg (z - {z_1}) = \arg ({z_2} - {z_1})$$

$$ \Rightarrow \arg \left( {{{z - {z_1}} \over {{z_2} - {z_1}}}} \right) = 0$$

$$\therefore$$ $${{z - {z_1}} \over {{z_2} - {z_1}}}$$ is purely real.

$$ \Rightarrow {{z - {z_1}} \over {{z_2} - {z_1}}} = {{\overline z - {{\overline z }_1}} \over {{{\overline z }_2} - {{\overline z }_1}}}$$

or, $$\left| {\matrix{ {z - {z_1}} & {\overline z - {{\overline z }_1}} \cr {{z_2} - {z_1}} & {{{\overline z }_2} - {{\overline z }_1}} \cr } } \right| = 0$$

$$\therefore$$ Option (c) is correct.

Hence, (a, c, d) is the correct option.

2

IIT-JEE 1998

MCQ (More than One Correct Answer)
If $$\,\left| {\matrix{ {6i} & { - 3i} & 1 \cr 4 & {3i} & { - 1} \cr {20} & 3 & i \cr } } \right| = x + iy$$ , then
A
x = 3, y = 2
B
x = 1, y = 3
C
x = 0, y = 3
D
x = 0, y = 0
3

IIT-JEE 1998

MCQ (More than One Correct Answer)
The value of the sum $$\,\,\sum\limits_{n = 1}^{13} {({i^n}} + {i^{n + 1}})$$ , where i = $$\sqrt { - 1} $$, equals
A
i
B
i - 1
C
- i
D
0
4

IIT-JEE 1998

MCQ (More than One Correct Answer)
If $${\omega}$$ is an imaginary cube root of unity, then $${(1\, + \omega \, - {\omega ^2})^7}$$ equals
A
$$128\omega $$
B
$$ - 128\omega $$
C
$$128{\omega ^2}$$
D
$$ - 128{\omega ^2}$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12