Let the set of all relations $R$ on the set $\{a, b, c, d, e, f\}$, such that $R$ is reflexive and symmetric, and $R$ contains exactly $10$ elements, be denoted by $\mathcal{S}$.
Then the number of elements in $\mathcal{S}$ is ________________.
Let ℝ denote the set of all real numbers. Let f: ℝ → ℝ be a function such that f(x) > 0 for all x ∈ ℝ, and f(x+y) = f(x)f(y) for all x, y ∈ ℝ.
Let the real numbers a₁, a₂, ..., a₅₀ be in an arithmetic progression. If f(a₃₁) = 64f(a₂₅), and
$ \sum\limits_{i=1}^{50} f(a_i) = 3(2^{25}+1), $
then the value of
$ \sum\limits_{i=6}^{30} f(a_i) $
is ________________.
Let the function $f: \mathbb{R} \rightarrow \mathbb{R}$ be defined by
$$ f(x)=\frac{\sin x}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)}+\frac{2}{e^{\pi x}} \frac{\left(x^{2023}+2024 x+2025\right)}{\left(x^2-x+3\right)} . $$
Then the number of solutions of $f(x)=0$ in $\mathbb{R}$ is _________.