1
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { If } f(x)=\left[\tan \left(\frac{\pi}{4}+x\right)\right]^{\frac{1}{x}}, \quad x \neq 0 \\ & =k \text {, } \qquad x=0 \text { is continuous }\\ & x=0 \end{aligned}$$ Then $k=$

A
$e^2$
B
1
C
$e$
D
$e^{-2}$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\frac{\left(e^{k x}-1\right) \tan k x}{4 x^2}, x \neq 0$

$$\qquad \qquad=16 \qquad x=0$$

is continuous at $x=0$, then $k=\ldots \ldots$

A
$\pm \frac{1}{8}$
B
$\pm 4$
C
$\pm 2$
D
$\pm 8$
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=[x]$, where $[x]$ is the greatest integer not greater than $x$, then $f^{\prime}\left(1^{+}\right)=$ ...........

A
1
B
2
C
0
D
$-$1
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If function

$$\begin{aligned} f(x) & =x-\frac{|x|}{x}, x<0 \\ & =x+\frac{|x|}{x}, x>0 \\ & =1, \quad x=0, \text { then } \end{aligned}$$

A
$\lim _\limits{x \rightarrow 0^{-}} f(x)$ does not exist
B
$\lim _\limits{x \rightarrow 0^{+}} f(x)$ does not exist
C
$f(x)$ is continuous at $x=0$
D
$\lim _\limits{x \rightarrow 0^{-}} f(x) \neq \lim _\limits{x \rightarrow 0^{+}} f(x)$
MHT CET Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12