1
MHT CET 2019 3rd May Morning Shift
MCQ (Single Correct Answer)
+2
-0

$$\begin{aligned} & \text { If } f(x)=\left[\tan \left(\frac{\pi}{4}+x\right)\right]^{\frac{1}{x}}, \quad x \neq 0 \\ & =k \text {, } \qquad x=0 \text { is continuous }\\ & x=0 \end{aligned}$$ Then $k=$

A
$e^2$
B
1
C
$e$
D
$e^{-2}$
2
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If the function $f(x)=\frac{\left(e^{k x}-1\right) \tan k x}{4 x^2}, x \neq 0$

$$\qquad \qquad=16 \qquad x=0$$

is continuous at $x=0$, then $k=\ldots \ldots$

A
$\pm \frac{1}{8}$
B
$\pm 4$
C
$\pm 2$
D
$\pm 8$
3
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If $f(x)=[x]$, where $[x]$ is the greatest integer not greater than $x$, then $f^{\prime}\left(1^{+}\right)=$ ...........

A
1
B
2
C
0
D
$-$1
4
MHT CET 2019 2nd May Evening Shift
MCQ (Single Correct Answer)
+2
-0

If function

$$\begin{aligned} f(x) & =x-\frac{|x|}{x}, x<0 \\ & =x+\frac{|x|}{x}, x>0 \\ & =1, \quad x=0, \text { then } \end{aligned}$$

A
$\lim _\limits{x \rightarrow 0^{-}} f(x)$ does not exist
B
$\lim _\limits{x \rightarrow 0^{+}} f(x)$ does not exist
C
$f(x)$ is continuous at $x=0$
D
$\lim _\limits{x \rightarrow 0^{-}} f(x) \neq \lim _\limits{x \rightarrow 0^{+}} f(x)$
MHT CET Subjects
EXAM MAP