A particle is performing S.H.M. with an amplitude 4 cm . At the mean position the velocity of the particle is $12 \mathrm{~cm} / \mathrm{s}$. When the speed of the particle becomes $6 \mathrm{~cm} / \mathrm{s}$, the distance of the particle from mean position is
The maximum velocity and maximum acceleration of a particle performing a linear S.H.M. is ' $\alpha$ ' and ' $\beta$ ' respectively. Then the path length of the particle is
A mass ' $m$ ' attached to a spring oscillates with a period of 3 second. If the mass is increased by 0.6 kg , the period increases by 3 second. The initial mass ' $m$ ' is equal to
The velocity of particle executing S.H.M. varies with displacement $(\mathrm{x})$ as $4 \mathrm{~V}^2=50-\mathrm{x}^2$. The time period of oscillation is $\frac{x}{7}$ second. The value of ' $x$ ' is (Take $\pi=\frac{22}{7}$)