1
MHT CET 2024 16th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

A particle performs linear S.H.M. At a particular instant, velocity of the particle is ' $u$ ' and acceleration is ' $\alpha$ ' while at another instant, velocity is ' $v$ ' and acceleration is ' $\beta$ ' $(0<\alpha<\beta)$. The distance between the two positions is

A
$\frac{u^2-v^2}{\alpha+\beta}$
B
$\frac{u^2+v^2}{\alpha+\beta}$
C
$\frac{u^2-v^2}{\alpha-\beta}$
D
$\frac{u^2+v^2}{\alpha-\beta}$
2
MHT CET 2024 16th May Morning Shift
MCQ (Single Correct Answer)
+1
-0

A particle executing S.H.M. has velocities ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' at distances ' $x_1$ ' and ' $x_2$ ' respectively, from the mean position. Its frequency is

A
$\frac{1}{2 \pi} \sqrt{\frac{V_1^2-V_2^2}{x_1^2-x_2^2}}$
B
$2 \pi \sqrt{\frac{x_1^2-x_2^2}{v_1^2-V_2^2}}$
C
$\frac{1}{2 \pi} \sqrt{\frac{V_2^2-V_1^2}{x_1^2-x_2^2}}$
D
$2 \pi \sqrt{\frac{\mathrm{x}_1^2-\mathrm{x}_2^2}{\mathrm{~V}_2^2-\mathrm{V}_1^2}}$
3
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

For a particle executing S.H.M. having amplitude A, the speed of the article is $\left(\frac{1}{3}\right)^{\text {rd }}$ of its maximum speed when the displacement from the mean position is

A
$\frac{3 \mathrm{~A}}{\sqrt{2}}$
B
$\frac{2 \mathrm{~A}}{3}$
C
$\frac{2 \sqrt{2}}{3} \mathrm{~A}$
D
$\frac{\sqrt{2}}{3} \mathrm{~A}$
4
MHT CET 2024 15th May Evening Shift
MCQ (Single Correct Answer)
+1
-0

The motion of a particle is described by the equation $a=-b x$ where ' $a$ ' is the acceleration, x is the displacement from the equilibrium position and b is a constant. The periodic time will be

A
$\frac{2 \pi}{\mathrm{~b}}$
B
$\frac{2 \pi}{\sqrt{b}}$
C
$2 \pi \sqrt{b}$
D
$2 \sqrt{\frac{\pi}{b}}$
MHT CET Subjects
EXAM MAP