A particle performs linear S.H.M. At a particular instant, velocity of the particle is ' $u$ ' and acceleration is ' $\alpha$ ' while at another instant, velocity is ' $v$ ' and acceleration is ' $\beta$ ' $(0<\alpha<\beta)$. The distance between the two positions is
A particle executing S.H.M. has velocities ' $\mathrm{V}_1$ ' and ' $\mathrm{V}_2$ ' at distances ' $x_1$ ' and ' $x_2$ ' respectively, from the mean position. Its frequency is
For a particle executing S.H.M. having amplitude A, the speed of the article is $\left(\frac{1}{3}\right)^{\text {rd }}$ of its maximum speed when the displacement from the mean position is
The motion of a particle is described by the equation $a=-b x$ where ' $a$ ' is the acceleration, x is the displacement from the equilibrium position and b is a constant. The periodic time will be