1
IIT-JEE 2003
Subjective
+4
-0
Normals are drawn from the point $$P$$ with slopes $${m_1}$$, $${m_2}$$, $${m_3}$$ to the parabola $${y^2} = 4x$$. If locus of $$P$$ with $${m_1}$$ $${m_2}$$$$ = \alpha $$ is a part of the parabola itself then find $$\alpha $$.
2
IIT-JEE 2002
Subjective
+5
-0
Prove that, in an ellipse, the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.
3
IIT-JEE 2001
Subjective
+4
-0
Let $$P$$ be a point on the ellipse $${{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1,0 < b < a$$. Let the line parallel to $$y$$-axis passing through $$P$$ meet the circle $${x^2} + {y^2} = {a^2}$$ at the point $$Q$$ such that $$P$$ and $$Q$$ are on the same side of $$x$$-axis. For two positive real numbers $$r$$ and $$s$$, find the locus of the point $$R$$ on $$PQ$$ such that $$PR$$ : $$RQ = r: s$$ as $$P$$ varies over the ellipse.
4
IIT-JEE 2000
Subjective
+7
-0
Let $$ABC$$ be an equilateral triangle inscribed in the circle $${x^2} + {y^2} = {a^2}$$. Suppose perpendiculars from $$A, B, C$$ to the major axis of the ellipse $$x.{{{x^2}} \over {{a^2}}} + {{{y^2}} \over {{b^2}}} = 1$$, $$(a>b)$$ meets the ellipse respectively, at $$P, Q, R$$. so that $$P, Q, R$$ lie on the same side of the major axis as $$A, B, C$$ respectively. Prove that the normals to the ellipse drawn at the points $$P, Q$$ and $$R$$ are concurrent.
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12