NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2013 Paper 2 Offline

MCQ (Single Correct Answer)
Match List $$I$$ with List $$II$$ and select the correct answer using the code given below the lists:

List $$I$$
$$P.$$$$\,\,\,\,\,$$ $${\left( {{1 \over {{y^2}}}{{\left( {{{\cos \left( {{{\tan }^{ - 1}}y} \right) + y\sin \left( {{{\tan }^{ - 1}}y} \right)} \over {\cot \left( {{{\sin }^{ - 1}}y} \right) + \tan \left( {{{\sin }^{ - 1}}y} \right)}}} \right)}^2} + {y^4}} \right)^{1/2}}$$ takes value

$$Q.$$ $$\,\,\,\,$$ If $$\cos x + \cos y + \cos z = 0 = \sin x + \sin y + \sin z$$ then
possible value of $$\cos {{x - y} \over 2}$$ is

$$R.$$ $$\,\,\,\,\,$$ If $$\cos \left( {{\pi \over 4} - x} \right)\cos 2x + \sin x\sin 2\sec x = \cos x\sin 2x\sec x + $$
$$\cos \left( {{\pi \over 4} + x} \right)\cos 2x$$ then possible value of $$\sec x$$ is

$$S.$$ $$\,\,\,\,\,$$ If $$\cot \left( {{{\sin }^{ - 1}}\sqrt {1 - {x^2}} } \right) = \sin \left( {{{\tan }^{ - 1}}\left( {x\sqrt 6 } \right)} \right),\,\,x \ne 0,$$
Then possible value of $$x$$ is

List $$II$$
$$1.$$ $$\,\,\,\,\,$$ $${1 \over 2}\sqrt {{5 \over 3}} $$

$$2.$$ $$\,\,\,\,\,$$ $$\sqrt 2 $$

$$3.$$ $$\,\,\,\,\,$$ $${1 \over 2}$$

$$1.$$ $$\,\,\,\,$$ $$1$$

A
$$P = 4,Q = 3,R = 1,S = 2$$
B
$$P = 4,Q = 3,R = 2,S = 1$$
C
$$P = 3,Q = 4,R = 2,S = 1$$
D
$$P = 3,Q = 4,R = 1,S = 2$$
2

JEE Advanced 2013 Paper 1 Offline

MCQ (Single Correct Answer)
The value of $$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}} \left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} \right)$$ is
A
$${{23} \over {25}}$$
B
$${{25} \over {23}}$$
C
$${{23} \over {24}}$$
D
$${{24} \over {23}}$$

Explanation

$$\cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + \sum\limits_{k = 1}^n {2k} } \right)} } \right)$$

$$ = \cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {1 + 2 \times {{n(n + 1)} \over 2}} \right)} } \right)$$

$$ = \cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}(1 + n(n + 1))} } \right)$$

$$ = \cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}\left( {{{n(n + 1) + 1} \over {(n + 1) - n}}} \right)} } \right)$$

$$ = \cot \left( {\sum\limits_{n = 1}^{23} {{{\cot }^{ - 1}}n - {{\cot }^{ - 1}}(n + 1)} } \right)$$

$$ = \cot (({\cot ^{ - 1}}1 + {\cot ^{ - 1}}2 + {\cot ^{ - 1}}3 + .... + {\cot ^{ - 1}}23) - ({\cot ^{ - 1}}2 + {\cot ^{ - 1}}3 + .... + {\cot ^{ - 1}}23 + {\cot ^{ - 1}}24))$$

$$ = \cot ({\cot ^{ - 1}}1 - {\cot ^{ - 1}}24)$$

$$ = \cot \left( {{{\cot }^{ - 1}}{{24 \times 1 + 1} \over {24 - 1}}} \right) = {{25} \over {23}}$$

3

IIT-JEE 2008

MCQ (Single Correct Answer)
If $$0 < x < 1$$, then
$$\sqrt {1 + {x^2}} {\left[ {{{\left\{ {x\cos \left( {{{\cot }^{ - 1}}x} \right) + \sin \left( {{{\cot }^{ - 1}}x} \right)} \right\}}^2} - 1} \right]^{1/2}} = $$
A
$${x \over {\sqrt {1 + {x^2}} }}$$
B
$$x$$
C
$$x\sqrt {1 + {x^2}} $$
D
$$\sqrt {1 + {x^2}} $$
4

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
The value of $$x$$ for which $$sin\left( {{{\cot }^{ - 1}}\left( {1 + x} \right)} \right) = \cos \left( {{{\tan }^{ - 1}}\,x} \right)$$ is
A
$$1/2$$
B
$$1$$
C
$$0$$
D
$$-1/2$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12