1
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1 Let the functions $$f:( - 1,1) \to R$$ and $$g:( - 1,1) \to ( - 1,1)$$ be defined by $$f(x) = |2x - 1| + |2x + 1|$$ and $$g(x) = x - [x]$$, where [x] denotes the greatest integer less than or equal to x. Let $$f\,o\,g:( - 1,1) \to R$$ be the composite function defined by $$(f\,o\,g)(x) = f(g(x))$$. Suppose c is the number of points in the interval ($$-$$1, 1) at which $$f\,o\,g$$ is NOT continuous, and suppose d is the number of points in the interval ($$-$$1, 1) at which $$f\,o\,g$$ is NOT differentiable. Then the value of c + d is ............
2
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1 The value of the limit

$$\mathop {\lim }\limits_{x \to {\pi \over 2}} {{4\sqrt 2 (\sin 3x + \sin x)} \over {\left( {2\sin 2x\sin {{3x} \over 2} + \cos {{5x} \over 2}} \right) - \left( {\sqrt 2 + \sqrt 2 \cos 2x + \cos {{3x} \over 2}} \right)}}$$

is ...........
3
JEE Advanced 2020 Paper 1 Offline
Numerical
+4
-0 let e denote the base of the natural logarithm. The value of the real number a for which the right hand limit

$$\mathop {\lim }\limits_{x \to {0^ + }} {{{{(1 - x)}^{1/x}} - {e^{ - 1}}} \over {{x^a}}}$$

is equal to a non-zero real number, is .............
4
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
The value of $${({({\log _2}9)^2})^{{1 \over {{{\log }_2}({{\log }_2}9)}}}} \times {(\sqrt 7 )^{{1 \over {{{\log }_4}7}}}}$$ is ....................
Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination