1

JEE Advanced 2013 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $${S_n} = {\sum\limits_{k = 1}^{4n} {\left( { - 1} \right)} ^{{{k\left( {k + 1} \right)} \over 2}}}{k^2}.$$ Then $${S_n}$$can take value(s)
A
1056
B
1088
C
1120
D
1332
2

IIT-JEE 2008

MCQ (More than One Correct Answer)
A straight line through the vertex p of a triangle PQR intersects the side QR at the point S and the circumcircle of the triangle PQR at the point T. If S is not the centre of the circumcircle, then
A
$${1 \over {PS}} + {1 \over {ST}} < {2 \over {\sqrt {QS \times SR} }}$$
B
$${1 \over {PS}} + {1 \over {ST}} > {2 \over {\sqrt {QS \times SR} }}$$
C
$${1 \over {PS}} + {1 \over {ST}} < {4 \over {QR}}$$
D
$${1 \over {PS}} + {1 \over {ST}} > {4 \over {QR}}$$
3

IIT-JEE 2008

MCQ (More than One Correct Answer)
Let $${S_n} = \sum\limits_{k = 1}^n {{n \over {{n^2} + kn + {k^2}}}} $$ and $${T_n} = \sum\limits_{k = 0}^{n - 1} {{n \over {{n^2} + kn + {k^2}}}} $$ for $$n$$ $$=1, 2, 3, ............$$ Then,
A
$${S_n} < {\pi \over {3\sqrt 3 }}$$
B
$${S_n} > {\pi \over {3\sqrt 3 }}$$
C
$${T_n} < {\pi \over {3\sqrt 3 }}$$
D
$${T_n} > {\pi \over {3\sqrt 3 }}$$
4

IIT-JEE 1999

MCQ (More than One Correct Answer)
For a positive integer $$n$$, let
$$a\left( n \right) = 1 + {1 \over 2} + {1 \over 3} + {1 \over 4} + .....\,{1 \over {\left( {{2^n}} \right) - 1}}$$. Then
A
$$a\left( {100} \right) \le 100$$
B
$$a\left( {100} \right) > 100$$
C
$$a\left( {200} \right) \le 100$$
D
$$a\left( {200} \right) > 100$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12