1
JEE Advanced 2016 Paper 1 Offline
MCQ (More than One Correct Answer)
+4
-2
Let $$f:\mathbb{R} \to \mathbb{R},\,g:\mathbb{R} \to \mathbb{R}$$ and $$h:\mathbb{R} \to \mathbb{R}$$ be differentiable functions such that $$f\left( x \right)= {x^3} + 3x + 2,$$ $$g\left( {f\left( x \right)} \right) = x$$ and $$h\left( {g\left( {g\left( x \right)} \right)} \right) = x$$ for all $$x \in R$$. Then
A
$$g'\left( 2 \right) = {1 \over {15}}$$
B
$$h'\left( 1 \right) = 666$$
C
$$h\left( 0 \right) = 16$$
D
$$h\left( {g\left( 3 \right)} \right) = 36$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12