NEW
New Website Launch
Experience the best way to solve previous year questions with mock tests (very detailed analysis), bookmark your favourite questions, practice etc...
1

JEE Advanced 2014 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $$f:\left( {0,\infty } \right) \to R$$ be given by $$f\left( x \right) = \int\limits_{{1 \over x}}^x {{e^{ - \left( {t + {1 \over t}} \right){{dt} \over t}}}} .$$ Then
A
$$f(x)$$ is monotonically increasing on $$\left[ {1,\infty } \right)$$
B
$$f(x)$$ is monotonically decreasing on $$(0,1)$$
C
$$f(x)$$ $$ + f\left( {{1 \over x}} \right) = 0$$, for all $$x \in \left( {0,\infty } \right)$$
D
$$f\left( {{2^x}} \right)$$ is an odd function of $$x$$ on $$R$$
2

IIT-JEE 2012 Paper 1 Offline

MCQ (More than One Correct Answer)
Let $$S$$ be the area of the region enclosed by $$y = {e^{ - {x^2}}}$$, $$y=0$$, $$x=0$$, and $$x=1$$; then
A
$$S \ge {1 \over e}$$
B
$$S \ge 1 - {1 \over e}$$
C
$$S \le {1 \over 4}\left( {1 + {1 \over {\sqrt e }}} \right)$$
D
$$S \le {1 \over {\sqrt 2 }} + {1 \over {\sqrt e }}\left( {1 - {1 \over {\sqrt 2 }}} \right)$$
3

IIT-JEE 2010

MCQ (More than One Correct Answer)
Let $$f$$ be a real-valued function defined on the interval $$\left( {0,\infty } \right)$$
by $$\,f\left( x \right) = \ln x + \int\limits_0^x {\sqrt {1 + \sin t\,} dt.} $$ then which of the following
statement(s) is (are) true?
A
$$f''(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$
B
$$f'(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$ and $$f'$$ is continuous on $$\left( {0,\infty } \right)$$, but not differentiable on $$\left( {0,\infty } \right)$$
C
there exists $$\,\,\alpha > 1$$ such that $$\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$$ for all $$x \in \left( {\alpha ,\infty } \right)\,$$
D
there exists $$\beta > 0$$ such that $$\left| {f\left( x \right)} \right| + \left| {f'\left( x \right)} \right| \le \beta $$ for all $$x \in \left( {0,\infty } \right)$$
4

IIT-JEE 2010

MCQ (More than One Correct Answer)
Let $$f$$ be a real-valued function defined on the interval $$\left( {0,\infty } \right)$$
by $$\,f\left( x \right) = \ln x + \int\limits_0^x {\sqrt {1 + \sin t\,} dt.} $$ then which of the following
statement(s) is (are) true?
A
$$f''(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$
B
$$f'(x)$$ exists for all $$x \in \left( {0,\infty } \right)$$ and $$f'$$ is continuous on $$\left( {0,\infty } \right)$$, but not differentiable on $$\left( {0,\infty } \right)$$
C
there exists $$\,\,\alpha > 1$$ such that $$\left| {f'\left( x \right)} \right| < \left| {f\left( x \right)} \right|$$ for all $$x \in \left( {\alpha ,\infty } \right)\,$$
D
there exists $$\beta > 0$$ such that $$\left| {f\left( x \right)} \right| + \left| {f'\left( x \right)} \right| \le \beta $$ for all $$x \in \left( {0,\infty } \right)$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12