1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Let $$\bar{z}$$ denote the complex conjugate of a complex number $$z$$ and let $$i=\sqrt{-1}$$. In the set of complex numbers, the number of distinct roots of the equation

$$\bar{z}-z^{2}=i\left(\bar{z}+z^{2}\right)$$

is _________.
2
JEE Advanced 2020 Paper 2 Offline
Numerical
+3
-1
For a complex number z, let Re(z) denote that real part of z. Let S be the set of all complex numbers z satisfying $${z^4} - |z{|^4} = 4i{z^2}$$, where i = $$\sqrt { - 1}$$. Then the minimum possible value of |z1 $$-$$ z2|2, where z1, z2$$\in$$S with Re(z1) > 0 and Re(z2) < 0 is .........
3
JEE Advanced 2019 Paper 1 Offline
Numerical
+3
-0
Let $$\omega \ne 1$$ be a cube root of unity. Then the minimum of the set $$\{ {\left| {a + b\omega + c{\omega ^2}} \right|^2}:a,b,c$$ distinct non-zero integers} equals ..................
4
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
For any integer k, let $${a_k} = \cos \left( {{{k\pi } \over 7}} \right) + i\,\,\sin \left( {{{k\pi } \over 7}} \right)$$, where $$i = \sqrt { - 1} \,$$. The value of the expression $${{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {a_k}} \right|} } \over {\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}$$ is