1
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
For any integer k, let $${a_k} = \cos \left( {{{k\pi } \over 7}} \right) + i\,\,\sin \left( {{{k\pi } \over 7}} \right)$$, where $$i = \sqrt { - 1} \,$$. The value of the expression $${{\sum\limits_{k = 1}^{12} {\left| {{\alpha _{k + 1}} - {a_k}} \right|} } \over {\sum\limits_{k = 1}^3 {\left| {{\alpha _{4k - 1}} - {\alpha _{4k - 2}}} \right|} }}$$ is
Your input ____
2
IIT-JEE 2011 Paper 1 Offline
Numerical
+4
-0
If z is any complex number satisfying $$\,\left| {z - 3 - 2i} \right| \le 2$$, then the minimum value of $$\left| {2z - 6 + 5i} \right|$$ is
Your input ____
3
IIT-JEE 2011 Paper 2 Offline
Numerical
+4
-0
Let $$\omega = {e^{{{i\pi } \over 3}}}$$, and a, b, c, x, y, z be non-zero complex numbers such that
$$a + b + c = x$$
$$a + b\omega + c{\omega ^2} = y$$
$$a + b{\omega ^2} + c\omega = z$$

Then the value of $${{{{\left| x \right|}^2} + {{\left| y \right|}^2} + {{\left| z \right|}^2}} \over {{{\left| a \right|}^2} + {{\left| b \right|}^2} + {{\left| c \right|}^2}}}$$ is

Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12