1

IIT-JEE 2005

MCQ (Single Correct Answer)
In an equilateral triangle, $$3$$ coins of radii $$1$$ unit each are kept so that they touch each other and also the sides of the triangle. Area of the triangle is
A
$$4 + 2\sqrt 3 $$
B
$$6 + 4\sqrt 3 $$
C
$$12 + {{7\sqrt 3 } \over 4}$$
D
$$3 + {{7\sqrt 3 } \over 4}$$
2

IIT-JEE 2005 Screening

MCQ (Single Correct Answer)
In a triangle $$ABC$$, $$a,b,c$$ are the lengths of its sides and $$A,B,C$$ are the angles of triangle $$ABC$$. The correct relation is given by
A
$$\left( {b - c} \right)\sin \left( {{{B - C} \over 2}} \right) = a\cos {A \over 2}$$
B
$$\left( {b - c} \right)cos\left( {{A \over 2}} \right) = a\,sin{{B - C} \over 2}$$
C
$$\left( {b + c} \right)\sin \left( {{{B + C} \over 2}} \right) = a\cos {A \over 2}$$
D
$$\left( {b - c} \right)cos\left( {{A \over 2}} \right) = 2a\,sin{{B + C} \over 2}$$
3

IIT-JEE 2004 Screening

MCQ (Single Correct Answer)
The sides of a triangle are in the ratio $$1:\sqrt 3 :2$$, then the angles of the triangle are in the ratio
A
$$1:3:5$$
B
$$2:3:4$$
C
$$3:2:1$$
D
$$1:2:3$$
4

IIT-JEE 2003 Screening

MCQ (Single Correct Answer)
If the angles of a triangle are in the ratio $$4:1:1$$, then the ratio of the longest side to the perimeter is
A
$$\sqrt 3 :\left( {2 + \sqrt 3 } \right)$$
B
$$1:6$$
C
$$1:2 + \sqrt 3 $$
D
$$2:3$$

Joint Entrance Examination

JEE Main JEE Advanced WB JEE

Graduate Aptitude Test in Engineering

GATE CSE GATE ECE GATE EE GATE ME GATE CE GATE PI GATE IN

Medical

NEET

CBSE

Class 12