1
IIT-JEE 2003
Subjective
+4
-0
If $${x^2} + \left( {a - b} \right)x + \left( {1 - a - b} \right) = 0$$ where $$a,\,b\, \in \,R$$ then find the values of a for which equation has unequal real roots for all values of $$b$$.
2
IIT-JEE 2001
Subjective
+4
-0
Let $$a,\,b,\,c$$ be real numbers with $$a \ne 0$$ and let $$\alpha ,\,\beta $$ be the roots of the equation $$a{x^2} + bx + c = 0$$. Express the roots of $${a^3}{x^2} + abcx + {c^3} = 0$$ in terms of $$\alpha ,\,\beta \,$$.
3
IIT-JEE 2000
Subjective
+4
-0
If $$\alpha ,\,\beta $$ are the roots of $$a{x^2} + bx + c = 0$$, $$\,\left( {a \ne 0} \right)$$ and $$\alpha + \delta ,\,\,\beta + \delta $$ are the roots of $$A{x^2} + Bx + c = 0,$$ $$\left( {A \ne 0\,} \right)\,$$ for some contant $$\delta $$, then prove that $${{{b^2} - 4ac} \over {{a^2}}} = {{{B^2} - 4Ac} \over {{A^2}}}$$.
4
IIT-JEE 1997
Subjective
+5
-0
Let $$S$$ be a square of unit area. Consider any quadrilateral which has one vertex on each side of $$S$$. If $$a,\,b,\,c$$ and $$d$$ denote the lengths of the sides of the quadrilateral, prove that $$2 \le {a^2} + {b^2} + {c^2} + {d^2} \le 4.$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12