1
JEE Advanced 2018 Paper 1 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
If the measurement errors in all the independent quantities are known, then it is possible to determine the error in any dependent quantity. This is done by the use of series expansion and truncating the expansion at the first power of the error. For example, consider the relation $$z = x/y.$$ If the errors in $$x,y$$ and $$z$$ are $$\Delta x,\Delta y$$ and $$\Delta z,$$ respectively, then
$$$z \pm \Delta z = {{x \pm \Delta x} \over {y \pm \Delta y}} = {x \over y}\left( {1 \pm {{\Delta x} \over x}} \right){\left( {1 \pm {{\Delta y} \over y}} \right)^{ - 1}}.$$$

The series expansion for $${\left( {1 \pm {{\Delta y} \over y}} \right)^{ - 1}},$$ to first power in $$\Delta y/y.$$ is $$1 \pm \left( {\Delta y/y} \right).$$ The relative errors in independent variables are always added. So the error in $$z$$ will be
$$$\Delta z = z\left( {{{\Delta x} \over x} + {{\Delta y} \over y}} \right).$$$

The above derivation makes the assumption that $$\Delta x/x < < 1,$$ $$\Delta y/y < < 1.$$ Therefore, the higher powers of these quantities are neglected.

In an experiment the initial number of radioactive nuclei is $$3000.$$ It is found that $$1000 \pm 40$$ nuclei decayed in the first $$1.0s.$$ For $$\left| x \right| < < 1.$$ $$\ln \left( {1 + x} \right) = x$$ up to first power in $$x.$$ The error $$\Delta \lambda ,$$ in the determination of the decay constant $$\lambda ,$$ in $${s^{ - 1}},$$ is
A
$$0.04$$
B
$$0.03$$
C
$$0.02$$
D
$$0.01$$
2
JEE Advanced 2017 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Change Language
A person measures the depth of a well by measuring the time interval between dropping a stone and receiving the sound of impact with the bottom of the well. The error in his measurement of time is $$\delta T = 0.01$$ seconds and he measures the depth of the well to be $$L=20$$ meters. Take the acceleration due to gravity $$g = 10m{s^{ - 2}}$$ and the velocity of sound is $$300$$ $$m{s^{ - 1}}$$. Then the fractional error in the measurement, $$\delta L/L,$$ is closest to
A
$$0.2\% $$
B
$$1\% $$
C
3%
D
5%
3
JEE Advanced 2016 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-1
Change Language
There are two Vernier calipers both of which have 1 cm divided into 10 equal divisions on the main scale. The Vernier scale of one of the calipers (C1) has 10 equal divisions that correspond to 9 main scale divisions. The Vernier scale of the other caliper (C2) has 10 equal divisions that correspond to 11 main scale divisions. The readings of the two calipers are shown in the figure. The measured values (in cm) by calipers C1 and C2 respectively, are

JEE Advanced 2016 Paper 2 Offline Physics - Units & Measurements Question 40 English
A
2.85 and 2.82
B
2.87 and 2.83
C
2.87 and 2.86
D
2.87 and 2.87
4
JEE Advanced 2013 Paper 2 Offline
MCQ (Single Correct Answer)
+3
-0.75
Match List I with List II and select the correct answer using the codes given below the lists:

List I

P. Boltzmann Constant
Q. Coefficient of viscosity
R. Plank Constant
S. Thermal conductivity

List II

1. [ML2T-1]
2. [ML-1T-1]
3. [MLT-3K-1]
4. [ML2T-2K-1]
A
$$\eqalign{ & P\,\,\,\,Q\,\,\,\,R\,\,\,\,S \cr & 3\,\,\,\,\,\,1\,\,\,\,\,2\,\,\,\,\,4 \cr} $$
B
$$\eqalign{ & P\,\,\,\,Q\,\,\,\,R\,\,\,\,S \cr & 3\,\,\,\,\,\,2\,\,\,\,\,1\,\,\,\,\,4 \cr} $$
C
$$\eqalign{ & P\,\,\,\,Q\,\,\,\,R\,\,\,\,S \cr & 4\,\,\,\,\,\,2\,\,\,\,\,1\,\,\,\,\,3 \cr} $$
D
$$\eqalign{ & P\,\,\,\,Q\,\,\,\,R\,\,\,\,S \cr & 4\,\,\,\,\,\,1\,\,\,\,\,2\,\,\,\,\,3 \cr} $$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12