1
JEE Advanced 2025 Paper 1 Online
Numerical
+4
-0
Change Language
A person sitting inside an elevator performs a weighing experiment with an object of mass 50 kg . Suppose that the variation of the height $y$ (in m ) of the elevator, from the ground, with time $t$ (in s) is given by $y=8\left[1+\sin \left(\frac{2 \pi t}{T}\right)\right]$, where $T=40 \pi \mathrm{~s}$. Taking acceleration due to gravity, $g=10$ $\mathrm{m} / \mathrm{s}^2$, the maximum variation of the object's weight (in N ) as observed in the experiment is ___________.
Your input ____
2
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Two particles, 1 and 2, each of mass $m$, are connected by a massless spring, and are on a horizontal frictionless plane, as shown in the figure. Initially, the two particles, with their center of mass at $x_0$, are oscillating with amplitude $a$ and angular frequency $\omega$. Thus, their positions at time $t$ are given by $x_1(t)=\left(x_0+d\right)+a \sin \omega t$ and $x_2(t)=\left(x_0-d\right)-a \sin \omega t$, respectively, where $d>2 a$. Particle 3 of mass $m$ moves towards this system with speed $u_0=a \omega / 2$, and undergoes instantaneous elastic collision with particle 2 , at time $t_0$. Finally, particles 1 and 2 acquire a center of mass speed $v_{\mathrm{cm}}$ and oscillate with amplitude $b$ and the same angular frequency $\omega$.

JEE Advanced 2024 Paper 2 Online Physics - Simple Harmonic Motion Question 4 English Comprehension
If the collision occurs at time $t_0=0$, the value of $v_{\mathrm{cm}} /(a \omega)$ will be ______.
Your input ____
3
JEE Advanced 2024 Paper 2 Online
Numerical
+3
-0
Change Language

Two particles, 1 and 2, each of mass $m$, are connected by a massless spring, and are on a horizontal frictionless plane, as shown in the figure. Initially, the two particles, with their center of mass at $x_0$, are oscillating with amplitude $a$ and angular frequency $\omega$. Thus, their positions at time $t$ are given by $x_1(t)=\left(x_0+d\right)+a \sin \omega t$ and $x_2(t)=\left(x_0-d\right)-a \sin \omega t$, respectively, where $d>2 a$. Particle 3 of mass $m$ moves towards this system with speed $u_0=a \omega / 2$, and undergoes instantaneous elastic collision with particle 2 , at time $t_0$. Finally, particles 1 and 2 acquire a center of mass speed $v_{\mathrm{cm}}$ and oscillate with amplitude $b$ and the same angular frequency $\omega$.

JEE Advanced 2024 Paper 2 Online Physics - Simple Harmonic Motion Question 3 English Comprehension
If the collision occurs at time $t_0=\pi /(2 \omega)$, then the value of $4 b^2 / a^2$ will be ______.
Your input ____
4
JEE Advanced 2022 Paper 2 Online
Numerical
+3
-1
Change Language
A particle of mass $1 \mathrm{~kg}$ is subjected to a force which depends on the position as $\vec{F}=$ $-k(x \hat{\imath}+y \hat{\jmath}) \mathrm{kg}\, \mathrm{m} \mathrm{s}^{-2}$ with $k=1 \mathrm{~kg} \mathrm{~s}^{-2}$. At time $t=0$, the particle's position $\vec{r}=$ $\left(\frac{1}{\sqrt{2}} \hat{\imath}+\sqrt{2} \hat{\jmath}\right) m$ and its velocity $\vec{v}=\left(-\sqrt{2} \hat{\imath}+\sqrt{2} \hat{\jmath}+\frac{2}{\pi} \hat{k}\right) m s^{-1}$. Let $v_{x}$ and $v_{y}$ denote the $x$ and the $y$ components of the particle's velocity, respectively. Ignore gravity. When $z=0.5 \mathrm{~m}$, the value of $\left(x v_{y}-y v_{x}\right)$ is __________ $m^{2} s^{-1}$.
Your input ____
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12