1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Two spherical stars $A$ and $B$ have densities $\rho_{A}$ and $\rho_{B}$, respectively. $A$ and $B$ have the same radius, and their masses $M_{A}$ and $M_{B}$ are related by $M_{B}=2 M_{A}$. Due to an interaction process, star $A$ loses some of its mass, so that its radius is halved, while its spherical shape is retained, and its density remains $\rho_{A}$. The entire mass lost by $A$ is deposited as a thick spherical shell on $B$ with the density of the shell being $\rho_{A}$. If $v_{A}$ and $v_{B}$ are the escape velocities from $A$ and $B$ after the interaction process, the ratio $\frac{v_{B}}{v_{A}}=\sqrt{\frac{10 n}{15^{1 / 3}}}$. The value of $n$ is __________ .
Your input ____
2
JEE Advanced 2021 Paper 2 Online
Numerical
+4
-0
The distance between two stars of masses 3MS and 6MS is 9R. Here R is the mean distance between the centers of the Earth and the Sun, and MS is the mass of the Sun. The two stars orbit around their common center of mass in circular orbits with period nT, where T is the period of Earth's revolution around the Sun. The value of n is __________.
Your input ____
3
JEE Advanced 2015 Paper 2 Offline
Numerical
+4
-0
A large spherical mass M is fixed at one position and two identical masses m are kept on a line passing through the centre of M (see figure). The point masses are connected by a rigid massless rod of length l and this assembly is free to move along the line connecting them.
All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance r = 3l from M the tension in the rod is zero for m = $$k\left( {{M \over {288}}} \right)$$. The value of k is
All three masses interact only through their mutual gravitational interaction. When the point mass nearer to M is at a distance r = 3l from M the tension in the rod is zero for m = $$k\left( {{M \over {288}}} \right)$$. The value of k is
Your input ____
4
JEE Advanced 2015 Paper 1 Offline
Numerical
+4
-0
A bullet is fired vertically upwards with velocity v from the surface of a spherical planet. When it reaches
its maximum height, its acceleration due to the planet’s gravity is $${\left( {{1 \over 4}} \right)^{th}}$$ of its value at the surface of the
planet. If the escape velocity from the planet is $${v_{esc}} = v\sqrt N $$, then the value of N is (ignore energy loss due
to atmosphere)
Your input ____
Questions Asked from Gravitation (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus