1
IIT-JEE 2003
Subjective
+4
-0
(i) Find the equation of the plane passing through the points $$(2, 1, 0), (5, 0, 1)$$ and $$(4, 1, 1).$$
(ii) If $$P$$ is the point $$(2, 1, 6)$$ then find the point $$Q$$ such that $$PQ$$ is perpendicular to the plane in (i) and the mid point of $$PQ$$ lies on it.
2
IIT-JEE 2002
Subjective
+5
-0
Let $$V$$ be the volume of the parallelopiped formed by the vectors $$\overrightarrow a = {a_1}\widehat i + {a_2}\widehat j + {a_3}\widehat k,$$ $$\,\,\,\,\overrightarrow b = {b_1}\widehat i + {b_2}\widehat j + {b_3}\widehat k,$$ $$\,\,\,\,\,\overrightarrow c = {c_1}\widehat i + {c_2}\widehat j + {c_3}\widehat k.$$ where $$r=1, 2, 3,$$ are non-negative real numbers and $$\sum\limits_{r = 1}^3 {\left( {{a_r} + {b_r} + {c_r}} \right) = 3L,} $$ show that $$V \le {L^3}\,\,.$$
3
IIT-JEE 2001
Subjective
+5
-0
Show, by vector methods, that the angular bisectors of a triangle are concurrent and find an expression for the position vector of the point of concurrency in terms of the position vectors of the vertices.
4
IIT-JEE 2001
Subjective
+5
-0
Find $$3-$$dimensional vectors $${\overrightarrow v _1},{\overrightarrow v _2},{\overrightarrow v _3}$$ satisfying
$$\,{\overrightarrow v _1}.{\overrightarrow v _1} = 4,\,{\overrightarrow v _1}.{\overrightarrow v _2} = - 2,\,{\overrightarrow v _1}.{\overrightarrow v _3} = 6,\,\,{\overrightarrow v _2}.{\overrightarrow v _2}$$
$$ = 2,\,{\overrightarrow v _2}.{\overrightarrow v _3} = - 5,\,{\overrightarrow v _3}.{\overrightarrow v _3} = 29$$
JEE Advanced Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
CBSE
Class 12