1
JEE Advanced 2020 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
For non-negative integers s and r, let

$$\left( {\matrix{ s \cr r \cr } } \right) = \left\{ {\matrix{ {{{s!} \over {r!(s - r)!}}} & {if\,r \le \,s,} \cr 0 & {if\,r\, > \,s} \cr } } \right.$$

For positive integers m and n, let

$$g(m,\,n) = \sum\limits_{p = 0}^{m + n} {{{f(m,n,p)} \over {\left( {\matrix{ {n + p} \cr p \cr } } \right)}}} $$

where for any non-negative integer p,

$$f(m,n,p) = \sum\limits_{i = 0}^p {\left( {\matrix{ m \cr i \cr } } \right)\left( {\matrix{ {n + i} \cr p \cr } } \right)\left( {\matrix{ {p + n} \cr {p - i} \cr } } \right)} $$

Then which of the following statements is/are TRUE?
A
g(m, n) = g(n, m) for all positive integers m, n
B
g(m, n + 1) = g(m + 1, n) for all positive integers m, n
C
g(2m, 2n) = 2g(m, n) for all positive integers m, n
D
g(2m, 2n) = (g(m, n))2 for all positive integers m, n
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12