1
IIT-JEE 1989
True or False
+1
-0
For any three vectors $${\overrightarrow a ,\,\overrightarrow b ,}$$ and $${\overrightarrow c ,}$$
$$\left( {\overrightarrow a - \overrightarrow b } \right)\,.\,\left( {\overrightarrow b - \overrightarrow c } \right)\, \times \,\left( {\overrightarrow c - \overrightarrow a } \right)\, = \,2\overrightarrow {a\,} .\,\overrightarrow {b\,} \times \,\overrightarrow c .$$
A
TRUE
B
FALSE
2
IIT-JEE 1984
True or False
+1
-0
The points with position vectors $$a+b,$$ $$a-b,$$ and $$a+kb$$ are collinear for all real values of $$k.$$
A
TRUE
B
FALSE
3
IIT-JEE 1983
True or False
+1
-0
If $$X.A=0, X.B=0, X.C=0$$ for some non-zero vector $$X,$$ then $$\left[ {A\,B\,C} \right] = 0$$
A
TRUE
B
FALSE
4
IIT-JEE 1981
True or False
+2
-0
Let $$\overrightarrow A ,\overrightarrow B$$ and $${\overrightarrow C }$$ be unit vectors suppose that $$\overrightarrow A .\overrightarrow B = \overrightarrow A .\overrightarrow C = 0,$$ and thatthe angle between $${\overrightarrow B }$$ and $${\overrightarrow C }$$ is $$\pi /6.$$ Then $$\overrightarrow A = \pm 2\left( {\overrightarrow B \times \overrightarrow C } \right).$$
A
TRUE
B
FALSE
EXAM MAP
Medical
NEET