1
JEE Advanced 2018 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-2
Change Language
For any positive integer n, define

$${f_n}:(0,\infty ) \to R$$ as

$${f_n} = \sum\limits_{j = 1}^n {{{\tan }^{ - 1}}} \left( {{1 \over {1 + (x + j)(x + j - 1)}}} \right)$$

for all x$$ \in $$(0, $$\infty $$). (Here, the inverse trigonometric function tan$$-$$1 x assumes values in $$\left( { - {\pi \over 2},{\pi \over 2}} \right)$$). Then, which of the following statement(s) is (are) TRUE?
A
$$\sum\limits_{j = 1}^5 {{{\tan }^2}({f_j}(0)) = 55} $$
B
$$\sum\limits_{j = 1}^{10} {(1 + f{'_j}(0)){{\sec }^2}({f_j}(0)) = 10} $$
C
For any fixed positive integer n, $$\mathop {\lim }\limits_{x \to \infty } \tan ({f_n}(x)) = {1 \over n}$$
D
For any fixed positive integer n, $$\mathop {\lim }\limits_{x \to \infty } {\sec ^2}({f_n}(x)) = 1$$
2
JEE Advanced 2015 Paper 2 Offline
MCQ (More than One Correct Answer)
+4
-1
If $$\alpha $$ $$ = 3{\sin ^{ - 1}}\left( {{6 \over {11}}} \right)$$ and $$\beta = 3{\cos ^{ - 1}}\left( {{4 \over 9}} \right),$$ where the inverse trigonimetric functions take only the principal values, then the correct options(s) is (are)
A
$$cos\beta > 0$$
B
$$\sin \beta < 0$$
C
$$\cos \left( {\alpha + \beta } \right) > 0$$
D
$$\cos \alpha < 0$$
JEE Advanced Subjects
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12