1

IIT-JEE 2004

Subjective

+2

-0

Find the equation of plane passing through $$(1, 1, 1)$$ & parallel to the lines $${L_1},{L_2}$$ having direction ratios $$(1,0,-1),(1,-1,0).$$ Find the volume of tetrahedron formed by origin and the points where these planes intersect the coordinate axes.

2

IIT-JEE 2004

Subjective

+2

-0

A parallelopiped $$'S'$$ has base points $$A, B, C$$ and $$D$$ and upper face points $$A',$$ $$B',$$ $$C'$$ and $$D'.$$ This parallelopiped is compressed by upper face $$A'B'C'D'$$ to form a new parallelopiped $$'T'$$ having upper face points $$A'',B'',C''$$ and $$D''.$$ Volume of parallelopiped $$T$$ is $$90$$ percent of the volume of parallelopiped $$S.$$ Prove that the locus of $$'A''',$$ is a plane.

3

IIT-JEE 2004

Subjective

+2

-0

If $$\overrightarrow a ,\overrightarrow b ,\overrightarrow c $$ and $$\overrightarrow d $$ are distinct vectors such that

$$\,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \,.$$ Prove that

$$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) \ne 0\,\,i.e.\,\,\,\overrightarrow a .\overrightarrow b + \overrightarrow d .\overrightarrow c \ne \overrightarrow d .\overrightarrow b + \overrightarrow a .\overrightarrow c $$

$$\,\overrightarrow a \times \overrightarrow c = \overrightarrow b \times \overrightarrow d $$ and $$\overrightarrow a \times \overrightarrow b = \overrightarrow c \times \overrightarrow d \,.$$ Prove that

$$\left( {\overrightarrow a - \overrightarrow d } \right).\left( {\overrightarrow b - \overrightarrow c } \right) \ne 0\,\,i.e.\,\,\,\overrightarrow a .\overrightarrow b + \overrightarrow d .\overrightarrow c \ne \overrightarrow d .\overrightarrow b + \overrightarrow a .\overrightarrow c $$

4

IIT-JEE 2004

Subjective

+4

-0

$${P_1}$$ and $${P_2}$$ are planes passing through origin. $${L_1}$$ and $${L_2}$$ are two line on $${P_1}$$ and $${P_2}$$ respectively such that their intersection is origin. Show that there exists points $$A, B, C,$$ whose permutation $$A',B',C'$$ can be chosen such that (i) $$A$$ is on $${L_1},$$ $$B$$ on $${P_1}$$ but not on $${L_1}$$ and $$C$$ not on $${P_1}$$ (ii) $$A'$$ is on $${L_2},$$ $$B'$$ on $${P_2}$$ but not on $${L_2}$$ and $$C'$$ not on $${P_2}$$

Questions Asked from Vector Algebra and 3D Geometry (Subjective)

Number in Brackets after Paper Indicates No. of Questions

IIT-JEE 2007 (1)
IIT-JEE 2006 (1)
IIT-JEE 2005 (2)
IIT-JEE 2004 (4)
IIT-JEE 2003 (2)
IIT-JEE 2002 (1)
IIT-JEE 2001 (3)
IIT-JEE 1999 (1)
IIT-JEE 1998 (2)
IIT-JEE 1997 (1)
IIT-JEE 1996 (1)
IIT-JEE 1994 (1)
IIT-JEE 1993 (1)
IIT-JEE 1991 (1)
IIT-JEE 1990 (1)
IIT-JEE 1989 (2)
IIT-JEE 1988 (1)
IIT-JEE 1987 (1)
IIT-JEE 1986 (1)
IIT-JEE 1983 (1)
IIT-JEE 1982 (2)
IIT-JEE 1978 (1)

JEE Advanced Subjects

Physics

Mechanics

Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation

Electricity

Optics

Modern Physics

Chemistry

Physical Chemistry

Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry

Inorganic Chemistry

Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis

Organic Chemistry

Mathematics

Algebra

Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Statistics
Complex Numbers

Trigonometry

Coordinate Geometry

Calculus