1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Considering only the principal values of the inverse trigonometric functions, the value of
$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$
is
$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$
is
Your input ____
2
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
The value of
$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$
in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$
in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
The number of real solutions of the equation $$\eqalign{
& {\sin ^{ - 1}}\left( {\sum\limits_{i = 1}^\infty {} {x^{i + 1}} - x\sum\limits_{i = 1}^\infty {} {{\left( {{x \over 2}} \right)}^i}} \right) \cr
& = {\pi \over 2} - {\cos ^1}\left( {\sum\limits_{i = 1}^\infty {} {{\left( {{{ - x} \over 2}} \right)}^i} - \sum\limits_{i = 1}^\infty {} {{\left( { - x} \right)}^i}} \right) \cr} $$ lying in the interval $$\left( { - {1 \over 2},{1 \over 2}} \right)$$ is ........... .
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
Your input ____
4
JEE Advanced 2014 Paper 1 Offline
Numerical
+4
-0
Let f : [0, 4$$\pi$$] $$\to$$ [0, $$\pi$$] be defined by f(x) = cos$$-$$1 (cos x). The number of points x $$\in$$ [0, 4$$\pi$$] satisfying the equation $$f(x) = {{10 - x} \over {10}}$$ is
Your input ____
Questions Asked from Inverse Trigonometric Functions (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Statistics
Complex Numbers
Trigonometry
Coordinate Geometry
Calculus