1
JEE Advanced 2022 Paper 1 Online
Numerical
+3
-0
Considering only the principal values of the inverse trigonometric functions, the value of
$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$
is
$$ \frac{3}{2} \cos ^{-1} \sqrt{\frac{2}{2+\pi^{2}}}+\frac{1}{4} \sin ^{-1} \frac{2 \sqrt{2} \pi}{2+\pi^{2}}+\tan ^{-1} \frac{\sqrt{2}}{\pi} $$
is
Your input ____
2
JEE Advanced 2019 Paper 2 Offline
Numerical
+3
-0
The value of
$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$
in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
$${\sec ^{ - 1}}\left( \matrix{ {1 \over 4}\sum\limits_{k = 0}^{10} {\sec \left( {{{7\pi } \over {12}} + {{k\pi } \over 2}} \right)} \sec \left( {{{7\pi } \over {12}} + {{(k + 1)\pi } \over 2}} \right) \hfill \cr} \right)$$
in the interval $$\left[ { - {\pi \over 4},\,{{3\pi } \over 4}} \right]$$ equals ..........
Your input ____
3
JEE Advanced 2018 Paper 1 Offline
Numerical
+3
-0
The number of real solutions of the equation $$\eqalign{
& {\sin ^{ - 1}}\left( {\sum\limits_{i = 1}^\infty {} {x^{i + 1}} - x\sum\limits_{i = 1}^\infty {} {{\left( {{x \over 2}} \right)}^i}} \right) \cr
& = {\pi \over 2} - {\cos ^1}\left( {\sum\limits_{i = 1}^\infty {} {{\left( {{{ - x} \over 2}} \right)}^i} - \sum\limits_{i = 1}^\infty {} {{\left( { - x} \right)}^i}} \right) \cr} $$ lying in the interval $$\left( { - {1 \over 2},{1 \over 2}} \right)$$ is ........... .
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
(Here, the inverse trigonometric functions sin$$-$$1 x and cos$$-$$1 x assume values in $${\left[ { - {\pi \over 2},{\pi \over 2}} \right]}$$ and $${\left[ {0,\pi } \right]}$$, respectively.)
Your input ____
4
JEE Advanced 2014 Paper 1 Offline
Numerical
+3
-0
Let f : [0, 4$$\pi$$] $$\to$$ [0, $$\pi$$] be defined by f(x) = cos$$-$$1 (cos x). The number of points x $$\in$$ [0, 4$$\pi$$] satisfying the equation $$f(x) = {{10 - x} \over {10}}$$ is
Your input ____
Questions Asked from Inverse Trigonometric Functions (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements Motion Laws of Motion Work Power & Energy Impulse & Momentum Rotational Motion Properties of Matter Heat and Thermodynamics Simple Harmonic Motion Waves Gravitation
Electricity
Electrostatics Current Electricity Capacitor Magnetism Electromagnetic Induction Alternating Current Electromagnetic Waves
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry Structure of Atom Redox Reactions Gaseous State Chemical Equilibrium Ionic Equilibrium Solutions Thermodynamics Chemical Kinetics and Nuclear Chemistry Electrochemistry Solid State Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity Chemical Bonding & Molecular Structure Isolation of Elements Hydrogen s-Block Elements p-Block Elements d and f Block Elements Coordination Compounds Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities Sequences and Series Mathematical Induction and Binomial Theorem Matrices and Determinants Permutations and Combinations Probability Vector Algebra 3D Geometry Statistics Complex Numbers
Trigonometry
Coordinate Geometry
Calculus