1
JEE Advanced 2021 Paper 1 Online
Numerical
+2
-0
Consider the lines L1 and L2 defined by
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of $$\lambda$$2 is __________.
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of $$\lambda$$2 is __________.
Your input ____
2
JEE Advanced 2021 Paper 1 Online
Numerical
+2
-0
Consider the lines L1 and L2 defined by
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of D is __________.
$${L_1}:x\sqrt 2 + y - 1 = 0$$ and $${L_2}:x\sqrt 2 - y + 1 = 0$$
For a fixed constant $$\lambda$$, let C be the locus of a point P such that the product of the distance of P from L1 and the distance of P from L2 is $$\lambda$$2. The line y = 2x + 1 meets C at two points R and S, where the distance between R and S is $$\sqrt {270} $$. Let the perpendicular bisector of RS meet C at two distinct points R' and S'. Let D be the square of the distance between R' and S'.
The value of D is __________.
Your input ____
3
JEE Advanced 2014 Paper 1 Offline
Numerical
+4
-0
For a point $$P$$ in the plane, Let $${d_1}\left( P \right)$$ and $${d_2}\left( P \right)$$ be the distance of the point $$P$$ from the lines $$x - y = 0$$ and $$x + y = 0$$ respectively. The area of the region $$R$$ consisting of all points $$P$$ lying in the first quadrant of the plane and satisfying $$2 \le {d_1}\left( P \right) + {d_2}\left( P \right) \le 4$$, is
Your input ____
Questions Asked from Straight Lines and Pair of Straight Lines (Numerical)
Number in Brackets after Paper Indicates No. of Questions
JEE Advanced Subjects
Physics
Mechanics
Units & Measurements
Motion
Laws of Motion
Work Power & Energy
Impulse & Momentum
Rotational Motion
Properties of Matter
Heat and Thermodynamics
Simple Harmonic Motion
Waves
Gravitation
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Some Basic Concepts of Chemistry
Structure of Atom
Redox Reactions
Gaseous State
Equilibrium
Solutions
States of Matter
Thermodynamics
Chemical Kinetics and Nuclear Chemistry
Electrochemistry
Solid State & Surface Chemistry
Inorganic Chemistry
Periodic Table & Periodicity
Chemical Bonding & Molecular Structure
Isolation of Elements
Hydrogen
s-Block Elements
p-Block Elements
d and f Block Elements
Coordination Compounds
Salt Analysis
Organic Chemistry
Mathematics
Algebra
Quadratic Equation and Inequalities
Sequences and Series
Mathematical Induction and Binomial Theorem
Matrices and Determinants
Permutations and Combinations
Probability
Vector Algebra and 3D Geometry
Complex Numbers
Trigonometry
Coordinate Geometry
Calculus