1
JEE Advanced 2013 Paper 1 Offline
Numerical
+4
-0
A vertical line passing through the point $$(h,0)$$ intersects the ellipse $${{{x^2}} \over 4} + {{{y^2}} \over 3} = 1$$ at the points $$P$$ and $$Q$$. Let the tangents to the ellipse at $$P$$ and $$Q$$ meet at the point $$R$$. If $$\Delta \left( h \right)$$$$=$$ area of the triangle $$PQR$$, $${{\Delta _1}}$$ $$= \mathop {\max }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$ and $${{\Delta _2}}$$ $$= \mathop {\min }\limits_{1/2 \le h \le 1} \Delta \left( h \right)$$, then $${8 \over {\sqrt 5 }}{\Delta _1} - 8{\Delta _2} =$$
2
IIT-JEE 2012 Paper 1 Offline
Numerical
+4
-0
Let $$S$$ be the focus of the parabola $${y^2} = 8x$$ and let $$PQ$$ be the common chord of the circle $${x^2} + {y^2} - 2x - 4y = 0$$ and the given parabola. The area of the triangle $$PQS$$ is
3
IIT-JEE 2011 Paper 1 Offline
Numerical
+4
-0
Consider the parabola $${y^2} = 8x$$. Let $${\Delta _1}$$ be the area of the triangle formed by the end points of its latus rectum and the point $$P\left( {{1 \over 2},2} \right)$$ on the parabola and $${\Delta _2}$$ be the area of the triangle formed by drawing tangents at $$P$$ and at the end points of the latus rectum. Then $${{{\Delta _1}} \over {{\Delta _2}}}$$ is
4
IIT-JEE 2010 Paper 1 Offline
Numerical
+4
-0

The line $$2x + y = 1$$ is tangent to the hyperbola $${{{x^2}} \over {{a^2}}} - {{{y^2}} \over {{b^2}}} = 1$$.

If this line passes through the point of intersection of the nearest directrix and the $$x$$-axis, then the eccentricity of the hyperbola is

Physics
Mechanics
Electricity
Optics
Modern Physics
Chemistry
Physical Chemistry
Inorganic Chemistry
Organic Chemistry
Mathematics
Algebra
Trigonometry
Coordinate Geometry
Calculus
EXAM MAP
Joint Entrance Examination