1
IIT-JEE 2000 Screening
+2
-0.5
A pole stands vertically inside a triangular park $$\Delta ABC$$. If the angle of elevation of the top of the pole from each corner of the park is same, then in $$\Delta ABC$$ the foot of the pole is at the
A
centroid
B
circumcentre
C
incentre
D
orthocentre
2
IIT-JEE 1998
+2
-0.5
If in a triangle $$PQR$$, $$\sin P,\sin Q,\sin R$$ are in $$A.P.,$$ then
A
the altitudes are in $$A.P.$$
B
the altitudes are in $$H.P.$$
C
the medians are in $$G.P.$$
D
the medians are in $$A.P$$
3
IIT-JEE 1998
+2
-0.5
Let $${A_0}{A_1}{A_2}{A_3}{A_4}{A_5}$$ be a regular hexagon inscribed in a circle of unit radius. Then the product of the lengths of the line segments $${A_0}{A_1},{A_0}{A_2}$$ and $${A_0}{A_4}$$ is
A
$${3 \over 4}$$
B
$$3\sqrt 3$$
C
$$3$$
D
$${{3\sqrt 3 } \over 2}$$
4
IIT-JEE 1995 Screening
+2
-0.5
In a triangle $$ABC$$, $$\angle B = {\pi \over 3}$$ and $$\angle C = {\pi \over 4}$$. Let $$D$$ divide $$BC$$ internally in the ratio $$1:3$$ then $${{\sin \angle BAD} \over {\sin \angle CAD}}$$ is equal to
A
$${1 \over {\sqrt 6 }}$$
B
$${1 \over 3}$$
C
$${1 \over {\sqrt 3 }}$$
D
$$\sqrt {{2 \over 3}}$$
EXAM MAP
Medical
NEET