1
IIT-JEE 2004
Subjective
+4
-0
A curve $$'C''$$ passes through $$(2,0)$$ and the slope at $$(x,y|)$$ as $$\,{{{{\left( {x + 1} \right)}^2} + \left( {y - 3} \right)} \over {x + 3}}$$. Find the equation of the curve. Find the area bounded by curve and $$x$$-axis in fourth quadrant.
2
IIT-JEE 2003
Subjective
+4
-0
A right circular cone with radius $$R$$ and height $$H$$ contains a liquid which eveporates at a rate proportional to its surface area in contact with air (proportionality constant $$= k > 0$$. Find the time after which the come is empty.
3
IIT-JEE 2001
Subjective
+10
-0
A hemispherical tank of radius $$2$$ metres is initially full of water and has an outlet of $$12$$ cm2 cross-sectional area at the bottom. The outlet is opened at some instant. The flow through the outlet is according to the law $$v(t)=0.6$$ $$\sqrt {2gh\left( t \right),}$$ where $$v(t)$$ and $$h(t)$$ are respectively the velocity of the flow through the outlet and the height of water level above the outlet at time $$t,$$ and $$g$$ is the acceleration due to gravity. Find the time it takes to empty the tank. (Hint: From a differential equation by relasing the decreases of water level to the outflow).
4
IIT-JEE 1997
Subjective
+5
-0
Let $$u(x)$$ and $$v(x)$$ satisfy the differential equation $${{du} \over {dx}} + p\left( x \right)u = f\left( x \right)$$ and $${{dv} \over {dx}} + p\left( x \right)v = g\left( x \right),$$ where $$p(x) f(x)$$ and $$g(x)$$ are continuous functions. If $$u\left( {{x_1}} \right) > v\left( {{x_1}} \right)$$ for some $${{x_1}}$$ and $$f(x)>g(x)$$ for all $$x > {x_1},$$ prove that any point $$(x,y)$$ where $$x > {x_1},$$ does not satisfy the equations $$y=u(x)$$ and $$y=v(x)$$
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
CBSE
Class 12