1
GATE ME 2017 Set 1
Numerical
+2
-0
Two models, $$P$$ and $$Q,$$ of a product earn profits of Rs. $$100$$ and Rs. $$80$$ per piece, respectively. Production times for $$P$$ and $$Q$$ are $$5$$ hours and $$3$$ hours, respectively, while the total production time available is $$150$$ hours. For a total batch size of $$40,$$ to maximize profit, the number of units of $$P$$ to be produced is ____________.
2
GATE ME 2016 Set 1
+2
-0.6
Maximize $$\,\,\,\,Z = 15{x_1} + 20{x_2}$$
Subject to
\eqalign{ & 12{x_1} + 4{x_2} \ge 36 \cr & 12{x_1} - 6{x_2} \le 24 \cr & \,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr}

The above linear programming problem has

A
infeasible solution
B
unbounded solution
C
alternative optimum solutions
D
degenerate solution
3
GATE ME 2016 Set 3
Numerical
+2
-0
A firm uses a turning center, a milling center and a grinding machine to produce two parts. The table below provides the machining time required for each part and the maximum machining time available on each machine. The profit per unit on parts $${\rm I}$$ and $${\rm II}$$ are Rs. $$40$$ and Rs. $$100,$$ respectively. The maximum profit per week of the firm is Rs. _______________
4
GATE ME 2015 Set 3
+2
-0.6
For the linear programming problem:
\eqalign{ & Maximize\,\,\,\,\,Z = 3{x_1} + 2{x_2} \cr & Subject\,\,to\,\,\,\, - 2{x_1} + 3{x_2} \le 9 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1} - 5{x_2} \ge - 20 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1},\,\,{x_2} \ge 0 \cr}

The above problem has

A
Unbounded solution
B
Infeasible solution
C
Alternative optimum solution
D
Degenerate solution
GATE ME Subjects
EXAM MAP
Medical
NEET