3
If A = $\begin{bmatrix} 10 & 2k + 5 \\\ 3k - 3 & k + 5 \end{bmatrix} $ is a symmetric matrix, the value of k is _______.
4
The determinant of a $$2 \times 2$$ matrix is $$50.$$ If one eigenvalue of the matrix is $$10,$$ the other eigenvalue is __________.
5
The product of eigenvalues of the matrix $$P$$ is $$P = \left[ {\matrix{
2 & 0 & 1 \cr
4 & { - 3} & 3 \cr
0 & 2 & { - 1} \cr
} } \right]$$
6
The condition for which the eigenvalues of the matrix $$A = \left[ {\matrix{
2 & 1 \cr
1 & k \cr
} } \right]$$ are positive, is
7
A real square matrix $$A$$ is called skew-symmetric if
8
The solution to the system of equations is $$\left[ {\matrix{
2 & 5 \cr
{ - 4} & 3 \cr
} } \right]\left\{ {\matrix{
x \cr
y \cr
} } \right\} = \left\{ {\matrix{
2 \cr
{ - 30} \cr
} } \right\}$$
9
The lowest eigen value of the $$2 \times 2$$ matrix $$\left[ {\matrix{
4 & 2 \cr
1 & 3 \cr
} } \right]$$ is ______.
10
At least one eigenvalue of a singular matrix is
11
If any two columns of a determinant $$P = \left| {\matrix{
4 & 7 & 8 \cr
3 & 1 & 5 \cr
9 & 6 & 2 \cr
} } \right|$$ are interchanged, which one of the following statements regarding the value of the determinant is CORRECT?
12
Which one of the following equations is a correct identity for arbitrary $$3 \times 3$$ real matrices $$P,Q$$ and $$R$$?
13
Consider a $$3 \times 3$$ real symmetric matrix $$S$$ such that two of its eigen values are $$a \ne 0,$$ $$b\,\, \ne 0$$ with respective eigen vectors $$\left[ {\matrix{
{{x_1}} \cr
{{x_2}} \cr
{{x_3}} \cr
} } \right],\left[ {\matrix{
{{y_1}} \cr
{{y_2}} \cr
{{y_3}} \cr
} } \right].$$ If $$a\, \ne b$$ then $${x_1}{y_1} + {x_2}{y_2} + {x_3}{y_3}$$ equals
14
Given that the determinant of the matrix $$\left[ {\matrix{
1 & 3 & 0 \cr
2 & 6 & 4 \cr
{ - 1} & 0 & 2 \cr
} } \right]$$ is $$-12$$, the determinant of the matrix $$\left[ {\matrix{
2 & 6 & 0 \cr
4 & {12} & 8 \cr
{ - 2} & 0 & 4 \cr
} } \right]$$ is
15
Which one of the following describes the relationship among the three vectors, $$\widehat i + \widehat j + \widehat k,\,\,2\widehat i + 3\widehat j + \widehat k$$ and $$5\widehat i + 6\widehat j + 4\widehat k?$$
16
The eigen values of a symmetric matrix are all
17
For the matrix $$A = \left[ {\matrix{
5 & 3 \cr
1 & 3 \cr
} } \right],$$ ONE of the normalized eigen vectors is given as
18
Eigen values of a real symmetric matrix are always
19
Consider the following system of equations
$$2{x_1} + {x_2} + {x_3} = 0,\,\,{x_2} - {x_3} = 0$$ and $${x_1} + {x_2} = 0.$$
This system has
20
One of the eigen vector of the matrix $$A = \left[ {\matrix{
2 & 2 \cr
1 & 3 \cr
} } \right]$$ is
21
For a matrix $$\left[ M \right] = \left[ {\matrix{
{{3 \over 5}} & {{4 \over 5}} \cr
x & {{3 \over 5}} \cr
} } \right].$$ The transpose of the matrix is equal to the inverse of the matrix, $${\left[ M \right]^T} = {\left[ M \right]^{ - 1}}.$$ The value of $$x$$ is given by
22
The matrix $$\left[ {\matrix{
1 & 2 & 4 \cr
3 & 0 & 6 \cr
1 & 1 & P \cr
} } \right]$$ has one eigen value to $$3.$$ The sum of the other two eigen values is
23
For what values of 'a' if any will the following system of equations in $$x, y$$ and $$z$$ have a solution?
$$$2x+3y=4,$$$
$$$x+y+z=4,$$$
$$$x+2y-z=a$$$
24
The number of linearly independent eigen vectors of $$\left[ {\matrix{
2 & 1 \cr
0 & 2 \cr
} } \right]$$ is
25
If a square matrix $$A$$ is real and symmetric then the eigen values
26
$$A$$ is a $$3 \times 4$$ matrix and $$AX=B$$ is an inconsistent system of equations. The highest possible rank of $$A$$ is
27
For what value of $$x$$ will the matrix given below become singular? $$\left[ {\matrix{
8 & x & 0 \cr
4 & 0 & 2 \cr
{12} & 6 & 0 \cr
} } \right]$$
28
The sum of the eigen values of the matrix $$\left[ {\matrix{
1 & 1 & 3 \cr
1 & 5 & 1 \cr
3 & 1 & 1 \cr
} } \right]$$ is
29
For the following set of simultaneous equations
$$$1.5x - 0.5y + z = 2$$$
$$$4x + 2y + 3z = 9$$$
$$$7x + y + 5z = 10$$$
30
The eigen values of $$\left[ {\matrix{
1 & 1 & 1 \cr
1 & 1 & 1 \cr
1 & 1 & 1 \cr
} } \right]$$ are
31
In the Gauss - elimination for a solving system of linear algebraic equations, triangularization leads to
32
Solve the system $$2x+3y+z=9,$$ $$4x+y=7,$$ $$x-3y-7z=6$$
33
Among the following, the pair of vectors orthogonal to each other is
34
Find out the eigen value of the matrix $$A = \left[ {\matrix{
1 & 0 & 0 \cr
2 & 3 & 1 \cr
0 & 2 & 4 \cr
} } \right]$$ for any one of the eigen values, find out the corresponding eigen vector?