Linear Algebra · Engineering Mathematics · GATE ME

Start Practice

Marks 1

1

Consider the system of linear equations

x + 2y + z = 5

2x + ay + 4z = 12

2x + 4y + 6z = b

The values of a and b such that there exists a non-trivial null space and the system admits infinite solutions are

GATE ME 2024
2

A linear transformation maps a point (𝑥, 𝑦) in the plane to the point (𝑥̂, 𝑦̂) according to the rule

𝑥̂ = 3𝑦, 𝑦̂ = 2𝑥.

Then, the disc 𝑥2 + 𝑦2 ≤ 1 gets transformed to a region with an area equal to _________ . (Rounded off to two decimals)

Use π = 3.14. 

GATE ME 2023
3
If A = $\begin{bmatrix} 10 & 2k + 5 \\\ 3k - 3 & k + 5 \end{bmatrix} $ is a symmetric matrix, the value of k is _______.
GATE ME 2022 Set 1
4
The determinant of a $$2 \times 2$$ matrix is $$50.$$ If one eigenvalue of the matrix is $$10,$$ the other eigenvalue is __________.
GATE ME 2017 Set 2
5
The product of eigenvalues of the matrix $$P$$ is $$P = \left[ {\matrix{ 2 & 0 & 1 \cr 4 & { - 3} & 3 \cr 0 & 2 & { - 1} \cr } } \right]$$
GATE ME 2017 Set 1
6
The condition for which the eigenvalues of the matrix $$A = \left[ {\matrix{ 2 & 1 \cr 1 & k \cr } } \right]$$ are positive, is
GATE ME 2016 Set 2
7
A real square matrix $$A$$ is called skew-symmetric if
GATE ME 2016 Set 3
8
The solution to the system of equations is $$\left[ {\matrix{ 2 & 5 \cr { - 4} & 3 \cr } } \right]\left\{ {\matrix{ x \cr y \cr } } \right\} = \left\{ {\matrix{ 2 \cr { - 30} \cr } } \right\}$$
GATE ME 2016 Set 1
9
The lowest eigen value of the $$2 \times 2$$ matrix $$\left[ {\matrix{ 4 & 2 \cr 1 & 3 \cr } } \right]$$ is ______.
GATE ME 2015 Set 3
10
At least one eigenvalue of a singular matrix is
GATE ME 2015 Set 2
11
If any two columns of a determinant $$P = \left| {\matrix{ 4 & 7 & 8 \cr 3 & 1 & 5 \cr 9 & 6 & 2 \cr } } \right|$$ are interchanged, which one of the following statements regarding the value of the determinant is CORRECT?
GATE ME 2015 Set 1
12
Which one of the following equations is a correct identity for arbitrary $$3 \times 3$$ real matrices $$P,Q$$ and $$R$$?
GATE ME 2014 Set 4
13
Consider a $$3 \times 3$$ real symmetric matrix $$S$$ such that two of its eigen values are $$a \ne 0,$$ $$b\,\, \ne 0$$ with respective eigen vectors $$\left[ {\matrix{ {{x_1}} \cr {{x_2}} \cr {{x_3}} \cr } } \right],\left[ {\matrix{ {{y_1}} \cr {{y_2}} \cr {{y_3}} \cr } } \right].$$ If $$a\, \ne b$$ then $${x_1}{y_1} + {x_2}{y_2} + {x_3}{y_3}$$ equals
GATE ME 2014 Set 3
14
Given that the determinant of the matrix $$\left[ {\matrix{ 1 & 3 & 0 \cr 2 & 6 & 4 \cr { - 1} & 0 & 2 \cr } } \right]$$ is $$-12$$, the determinant of the matrix $$\left[ {\matrix{ 2 & 6 & 0 \cr 4 & {12} & 8 \cr { - 2} & 0 & 4 \cr } } \right]$$ is
GATE ME 2014 Set 1
15
Which one of the following describes the relationship among the three vectors, $$\widehat i + \widehat j + \widehat k,\,\,2\widehat i + 3\widehat j + \widehat k$$ and $$5\widehat i + 6\widehat j + 4\widehat k?$$
GATE ME 2014 Set 1
16
The eigen values of a symmetric matrix are all
GATE ME 2013
17
For the matrix $$A = \left[ {\matrix{ 5 & 3 \cr 1 & 3 \cr } } \right],$$ ONE of the normalized eigen vectors is given as
GATE ME 2012
18
Eigen values of a real symmetric matrix are always
GATE ME 2011
19
Consider the following system of equations
$$2{x_1} + {x_2} + {x_3} = 0,\,\,{x_2} - {x_3} = 0$$ and $${x_1} + {x_2} = 0.$$
This system has
GATE ME 2011
20
One of the eigen vector of the matrix $$A = \left[ {\matrix{ 2 & 2 \cr 1 & 3 \cr } } \right]$$ is
GATE ME 2010
21
For a matrix $$\left[ M \right] = \left[ {\matrix{ {{3 \over 5}} & {{4 \over 5}} \cr x & {{3 \over 5}} \cr } } \right].$$ The transpose of the matrix is equal to the inverse of the matrix, $${\left[ M \right]^T} = {\left[ M \right]^{ - 1}}.$$ The value of $$x$$ is given by
GATE ME 2009
22
The matrix $$\left[ {\matrix{ 1 & 2 & 4 \cr 3 & 0 & 6 \cr 1 & 1 & P \cr } } \right]$$ has one eigen value to $$3.$$ The sum of the other two eigen values is
GATE ME 2008
23
For what values of 'a' if any will the following system of equations in $$x, y$$ and $$z$$ have a solution? $$$2x+3y=4,$$$ $$$x+y+z=4,$$$ $$$x+2y-z=a$$$
GATE ME 2008
24
The number of linearly independent eigen vectors of $$\left[ {\matrix{ 2 & 1 \cr 0 & 2 \cr } } \right]$$ is
GATE ME 2007
25
If a square matrix $$A$$ is real and symmetric then the eigen values
GATE ME 2007
26
$$A$$ is a $$3 \times 4$$ matrix and $$AX=B$$ is an inconsistent system of equations. The highest possible rank of $$A$$ is
GATE ME 2005
27
For what value of $$x$$ will the matrix given below become singular? $$\left[ {\matrix{ 8 & x & 0 \cr 4 & 0 & 2 \cr {12} & 6 & 0 \cr } } \right]$$
GATE ME 2004
28
The sum of the eigen values of the matrix $$\left[ {\matrix{ 1 & 1 & 3 \cr 1 & 5 & 1 \cr 3 & 1 & 1 \cr } } \right]$$ is
GATE ME 2004
29
For the following set of simultaneous equations $$$1.5x - 0.5y + z = 2$$$ $$$4x + 2y + 3z = 9$$$ $$$7x + y + 5z = 10$$$
GATE ME 1997
30
The eigen values of $$\left[ {\matrix{ 1 & 1 & 1 \cr 1 & 1 & 1 \cr 1 & 1 & 1 \cr } } \right]$$ are
GATE ME 1996
31
In the Gauss - elimination for a solving system of linear algebraic equations, triangularization leads to
GATE ME 1996
32
Solve the system $$2x+3y+z=9,$$ $$4x+y=7,$$ $$x-3y-7z=6$$
GATE ME 1995
33
Among the following, the pair of vectors orthogonal to each other is
GATE ME 1995
34
Find out the eigen value of the matrix $$A = \left[ {\matrix{ 1 & 0 & 0 \cr 2 & 3 & 1 \cr 0 & 2 & 4 \cr } } \right]$$ for any one of the eigen values, find out the corresponding eigen vector?
GATE ME 1994

Marks 2

1

The matrix $\begin{bmatrix} 1 & a \\ 8 & 3 \end{bmatrix}$ (where $a > 0$) has a negative eigenvalue if $a$ is greater than

GATE ME 2024
2
A is a 3 × 5 real matrix of rank 2. For the set of homogeneous equations Ax = 0, where 0 is a zero vector and x is a vector of unknown variables, which of the following is/are true?
GATE ME 2022 Set 2
3
If the sum and product of eigenvalues of a 2 × 2 real matrix $\begin{bmatrix}3&p\\\ p&q\end{bmatrix} $ are 4 and -1 respectively, then |p| is _______ (in integer).
GATE ME 2022 Set 2
4

The system of linear equations in real (x, y) given by

$\rm \begin{pmatrix} \rm x & \rm y \end{pmatrix} \begin{bmatrix} 2 & 5- 2 α \\\ α & 1 \end{bmatrix} = \rm \begin{pmatrix} \rm 0 & \rm 0 \end{pmatrix} $

involves a real parameter α and has infinitely many non-trivial solutions for special value(s) of α. Which one or more among the following options is/are non-trivial solution(s) of (x, y) for such special value(s) of α ?

GATE ME 2022 Set 1
5
Consider the matrix $$A = \left[ {\matrix{ {50} & {70} \cr {70} & {80} \cr } } \right]$$ whose eigenvectors corresponding to eigen values $${\lambda _1}$$ and $${\lambda _2}$$ are $${x_1} = \left[ {\matrix{ {70} \cr {{\lambda _1} - 50} \cr } } \right]$$ and $${x_2} = \left[ {\matrix{ {{\lambda _2} - 80} \cr {70} \cr } } \right],$$ respectively. The value of $$x_1^T{x_2}$$ is ________
GATE ME 2017 Set 2
6
The number of linear independent eigenvectors of matrix $$A = \left[ {\matrix{ 2 & 1 & 0 \cr 0 & 2 & 0 \cr 0 & 0 & 3 \cr } } \right]$$ is ________.
GATE ME 2016 Set 3
7
For a given matrix $$P = \left[ {\matrix{ {4 + 3i} & { - i} \cr i & {4 - 3i} \cr } } \right],$$ where $$i = \sqrt { - 1} ,$$ the inverse of matrix $$P$$ is
GATE ME 2015 Set 3
8
Choose the CORRECT set of functions, which are linearly dependent.
GATE ME 2013
9
$$x+2y+z=4, 2x+y+2z=5, x-y+z=1$$
The system of algebraic equations given above has
GATE ME 2012
10
The eigen vectors of the matrix $$\left[ {\matrix{ 1 & 2 \cr 0 & 2 \cr } } \right]$$ are written in the form $$\left[ {\matrix{ 1 \cr a \cr } } \right]\,\,\& \,\,\left[ {\matrix{ 1 \cr b \cr } } \right].$$ What is $$a+b$$?
GATE ME 2008
11
Eigen values of a matrix $$S = \left[ {\matrix{ 3 & 2 \cr 2 & 3 \cr } } \right]$$ are $$5$$ and $$1.$$ What are the eigen values of the matrix $${S^2} = SS?$$
GATE ME 2006
12
Multiplication of matrices $$E$$ and $$F$$ is $$G.$$ Matrices $$E$$ and $$G$$ are
$$E = \left[ {\matrix{ {\cos \theta } & { - sin\theta } & 0 \cr {sin\theta } & {\cos \theta } & 0 \cr 0 & 0 & 1 \cr } } \right]$$ and $$G = \left[ {\matrix{ 1 & 0 & 0 \cr 0 & 1 & 0 \cr 0 & 0 & 1 \cr } } \right]$$
What is the matrix $$F?$$
GATE ME 2006
13
Which one of the following is an eigen vector of the matrix $$\left[ {\matrix{ 5 & 0 & 0 & 0 \cr 0 & 5 & 0 & 0 \cr 0 & 0 & 2 & 1 \cr 0 & 0 & 3 & 1 \cr } } \right]$$ is
GATE ME 2005
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12