Turbulent Flow · Fluid Mechanics · GATE ME

Start Practice

Marks 1

Marks 2

1
Water at $${25^0}C$$ is flowing through a $$1.0km$$ long $$G.I.$$ pipe of $$200mm$$ diameter at the rate of $$0.07$$ $${m^3}/s.$$ If value of Darcy friction factor for this pipe is $$0.02$$ and density of water is $$1000\,\,kg/{m^3}$$, the pumping power (in $$kW$$) required to maintain the flow is
GATE ME 2009
2
A siphon draws water from a reservoir and discharges it out at atmospheric pressure. Assuming ideal fluid and the reservoir is large, the velocity at point $$P$$ in the siphon tube is: GATE ME 2006 Fluid Mechanics - Turbulent Flow Question 5 English
GATE ME 2006
3
A syringe with a frictionless plunger contains water and has at its end a $$100$$ $$mm$$ long needle of $$1$$ $$mm$$ diameter. The internal diameter of the syringe is $$10$$ $$mm.$$ Water density is $$1000\,\,kg/{m^3}.$$ . The plunger is pushed in at $$10$$ $$mm/s$$ and the water comes out as a jet. GATE ME 2003 Fluid Mechanics - Turbulent Flow Question 6 English

Neglect losses in the cylinder and assume fully developed laminar viscous flow throughout the needle; the Darcy friction factor is $${64/R_e}$$. Where $${R_e}$$ is the Reynolds number. Given that the viscosity of water is $$1.0 \times {10^{ - 3}}\,\,kg/m\,\,\,s,$$ the force $$F$$ in newtons required on the plunger is

GATE ME 2003
4
A syringe with a frictionless plunger contains water and has at its end a $$100$$ $$mm$$ long needle of $$1$$ $$mm$$ diameter. The internal diameter of the syringe is $$10$$ $$mm.$$ Water density is $$1000\,\,kg/{m^3}.$$ . The plunger is pushed in at $$10$$ $$mm/s$$ and the water comes out as a jet. GATE ME 2003 Fluid Mechanics - Turbulent Flow Question 7 English

Assuming ideal flow, the force $$F$$ in Newton’s required on the plunger to push out the water is

GATE ME 2003
5
The discharge velocity at the pipe exit in figure is GATE ME 1998 Fluid Mechanics - Turbulent Flow Question 1 English
GATE ME 1998
6
Fluid is flowing with an average velocity of $$V$$ through a pipe of diameter $$d.$$ over a length of $$L,$$ the “head” loss is given by $${{fL{V^2}} \over {2gD}}.$$ The friction factor, $$f,$$ for laminar flow in terms of Reynolds number ($$Re$$) is ______________ (fill the blank)
GATE ME 1994
7
Shown below are three tanks, tank $$1$$ without an orifice tube and tanks $$2$$ and $$3$$ with orifice tubes as shown. Neglecting losses and assuming the diameter of orifice to be much less than that of the tank, write expressions for the exit velocity in each of the three tanks. GATE ME 1993 Fluid Mechanics - Turbulent Flow Question 2 English
GATE ME 1993
8
In the case of turbulent flow of a fluid through a circular tube (as compared to the case of laminar flow at the same flow rate) the maximum velocity is ...................., shear stress at the wall is ................................., and the pressure drop across a given length is ____________. The correct words for the bllanks are, respectively:
GATE ME 1987

Marks 5

EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12