Calculus · Engineering Mathematics · GATE ME

Start Practice

Marks 1

1

Let $f(.)$ be a twice differentiable function from $ \mathbb{R}^{2} \rightarrow \mathbb{R}$. If $P, \mathbf{x}_{0} \in \mathbb{R}^{2}$ where $\vert \vert P\vert \vert$ is sufficiently small (here $\vert \vert . \vert \vert$ is the Euclidean norm or distance function), then $f (\mathbf{x}_{0} + p) = f(\mathbf{x}_{0}) + \nabla f(\mathbf{x}_{0})^{T}p + \dfrac{1}{2} p^{T} \nabla^{2}f(\psi)p$ where $\psi \in \mathbb{R}^{2}$ is a point on the line segment joining $\mathbf{x}_{0}$ and $\mathbf{x}_{0} + p$. If $\mathbf{x}_{0}$ is a strict local minimum of $f (\mathbf{x})$, then which one of the following statements is TRUE?

GATE ME 2024
2

The figure shows the plot of a function over the interval [-4, 4]. Which one of the options given CORRECTLY identifies the function?

GATE ME 2023 Engineering Mathematics - Calculus Question 1 English
GATE ME 2023
3

Given $\int^{\infty}_{-\infty}e^{-x^2}dx=\sqrt{\pi}$

If a and b are positive integers, the value of $\int^{\infty}_{-\infty}e^{-a(x+b)^2}dx$ is _________.

GATE ME 2022 Set 2
4
A polynomial ψ(s) = ansn + an-1sn-1 + ......+ a1s + a0 of degree n > 3 with constant real coefficients an, an-1, ... a0 has triple roots at s = -σ. Which one of the following conditions must be satisfied?
GATE ME 2022 Set 2
5

The limit

$\rm p = \displaystyle\lim_{x \rightarrow \pi} \left( \frac{x^2 + α x + 2 \pi^2}{x - \pi + 2 \sin x} \right)$

has a finite value for a real α. The value of α and the corresponding limit p are

GATE ME 2022 Set 1
6
Define [x] as the greatest integer less than or equal to x, for each x ϵ (-∞, ∞). If y = [x], then area under y for x ϵ [1,4] is
GATE ME 2020 Set 1
7
The value of $$\mathop {\lim }\limits_{x \to 0} \left( {{{{x^3} - \sin \left( x \right)} \over x}} \right)$$ is
GATE ME 2017 Set 1
8
The values of $$x$$ for which the function $$f\left( x \right) = {{{x^2} - 3x - 4} \over {{x^2} + 3x - 4}}$$ is NOT continuous are
GATE ME 2016 Set 2
9
$$\mathop {Lt}\limits_{x \to 0} {{{{\log }_e}\left( {1 + 4x} \right)} \over {{e^{3x}} - 1}}$$ is equal to
GATE ME 2016 Set 3
10
At $$x=0,$$ the function $$f\left( x \right) = \left| x \right|$$ has
GATE ME 2015 Set 2
11
The value of $$\mathop {Lim}\limits_{x \to 0} \,{{1 - \cos \left( {{x^2}} \right)} \over {2{x^4}}}$$ is
GATE ME 2015 Set 1
12
The value of $$\mathop {Lim}\limits_{x \to 0} \left( {{{ - \sin x} \over {2\sin x + x\cos x}}} \right)\,\,\,$$ is __________.
GATE ME 2015 Set 3
13
The value of the integral $$\int\limits_0^2 {{{{{\left( {x - 1} \right)}^2}\sin \left( {x - 1} \right)} \over {{{\left( {x - 1} \right)}^2} + \cos \left( {x - 1} \right)}}dx} $$ is
GATE ME 2014 Set 4
14
$$\mathop {Lt}\limits_{x \to 0} \left( {{{{e^{2x}} - 1} \over {\sin \left( {4x} \right)}}} \right)\,\,$$ is equal to
GATE ME 2014 Set 2
15
$$\mathop {Lt}\limits_{x \to 0} {{x - \sin x} \over {1 - \cos x}}$$ is
GATE ME 2014 Set 1
16
If a function is continuous at a point,
GATE ME 2014 Set 3
17
The value of the definite integral $$\int_1^e {\sqrt x \ln \left( x \right)dx} $$ is
GATE ME 2013
18
The area enclosed between the straight line $$y=x$$ and the parabola $$y = {x^2}$$ in the $$x-y$$ plane is
GATE ME 2012
19
Consider the function $$f\left( x \right) = \left| x \right|$$ in the interval $$\,\, - 1 \le x \le 1.\,\,\,$$ At the point $$x=0, f(x)$$ is
GATE ME 2012
20
$$\,\mathop {Lim}\limits_{x \to 0} \left( {{{1 - \cos x} \over {{x^2}}}} \right)$$ is
GATE ME 2012
21
At $$x=0,$$ the function $$f\left( x \right) = {x^3} + 1$$ has
GATE ME 2012
22
If $$f(x)$$ is even function and a is a positive real number , then $$\int\limits_{ - a}^a {f\left( x \right)dx\,\,} $$ equals ________.
GATE ME 2011
23
A series expansion for the function $$\sin \theta $$ is _______.
GATE ME 2011
24
What is $$\mathop {Lim}\limits_{\theta \to 0} {{\sin \theta } \over \theta }\,\,$$ equal to ?
GATE ME 2011
25
The parabolic are $$y = \sqrt x ,1 \le x \le 2$$ is revolved around the $$x$$-axis. The volume of the solid of revolution is
GATE ME 2010
26
The function $$y = \left| {2 - 3x} \right|$$
GATE ME 2010
27
The value of the integral $$\int\limits_{ - a}^a {{{dx} \over {1 + {x^2}}}} $$
GATE ME 2010
28
The area enclosed between the curves $${y^2} = 4x\,\,$$ and $${{x^2} = 4y}$$ is
GATE ME 2009
29
The distance between the origin and the point nearest to it on the surface $$\,\,{z^2} = 1 + xy\,\,$$ is
GATE ME 2009
30
In the Taylor series expansion of $${e^x}$$ about $$x=2,$$ the coefficient of $$\,\,{\left( {x - 2} \right)^4}\,\,$$ is
GATE ME 2008
31
The value of $$\,\,\mathop {Lim}\limits_{x \to 8} {{{x^{1/3}} - 2} \over {x - 8}}\,\,$$ is
GATE ME 2008
32
The minimum value of function $$\,\,y = {x^2}\,\,$$ in the interval $$\,\,\left[ {1,5} \right]\,\,$$ is
GATE ME 2007
33
$$\int\limits_{ - a}^a {\left[ {{{\sin }^6}\,x + {{\sin }^7}\,x} \right]dx} $$ is equal to
GATE ME 2005
34
Changing the order of integration in the double integral
$${\rm I} = \int\limits_0^8 {\int\limits_{{\raise0.5ex\hbox{$\scriptstyle x$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 4$}}}^2 {f\left( {x,\,y} \right)dy\,dx} } $$ leads to $$\,{\rm I} = \int\limits_r^s {\int\limits_p^q {f\left( {x,\,y} \right)dy\,dx} } .$$ What is $$q$$?
GATE ME 2005
35
If $$\,\,\,x = a\left( {\theta + Sin\theta } \right)$$ and $$y = a\left( {1 - Cos\theta } \right)$$ then $$\,\,{{dy} \over {dx}} = \,\_\_\_\_\_.$$
GATE ME 2004
36
Value of the function $$\mathop {Lim}\limits_{x \to a} \,{\left( {x - a} \right)^{x - a}}$$ is _______.
GATE ME 1999
37
Area bounded by the curve $$y = {x^2}$$ and the lines $$x=4$$ and $$y=0$$ is given by
GATE ME 1997
38
If a function is continuous at a point its first derivative
GATE ME 1996
39
The area bounded by the parabola $$2y = {x^2}$$ and the lines $$x=y-4$$ is equal to _________.
GATE ME 1995
40
If $$H(x, y)$$ is homogeneous function of degree $$n$$ then $$x{{\partial H} \over {\partial x}} + y{{\partial H} \over {\partial y}} = nH$$
GATE ME 1994
41
The value of $$\int\limits_0^\infty {{e^{ - {y^3}}}.{y^{1/2}}} $$ dy is _________.
GATE ME 1994
42
$$\mathop {Lim}\limits_{x \to 0} {{x\left( {{e^x} - 1} \right) + 2\left( {\cos x - 1} \right)} \over {x\left( {1 - \cos x} \right)}} = \_\_\_\_\_\_.$$
GATE ME 1993
43
The function $$f\left( {x,y} \right) = {x^2}y - 3xy + 2y + x$$ has
GATE ME 1993

Marks 2

1

If the value of the double integral

$\int_{x=3}^{4} \int_{y=1}^{2} \frac{dydx}{(x + y)^2}$

is $\log_e(\frac{a}{24})$, then $a$ is __________ (answer in integer).

GATE ME 2024
2
A parametric curve defined by $$x = \cos \left( {{{\pi u} \over 2}} \right),y = \sin \left( {{{\pi u} \over 2}} \right)\,\,$$ in the range $$0 \le u \le 1$$ is rotated about the $$x-$$axis by $$360$$ degrees. Area of the surface generated is
GATE ME 2017 Set 1
3
$$\mathop {Lt}\limits_{x \to \infty } \left( {\sqrt {{x^2} + x - 1} - x} \right)$$ is
GATE ME 2016 Set 3
4
Consider the function $$f\left( x \right) = 2{x^3} - 3{x^2}\,\,$$ in the domain $$\,\left[ { - 1,2} \right].$$ The global minimum of $$f(x)$$ is _________.
GATE ME 2016 Set 1
5
Consider an ant crawling along the curve $$\,{\left( {x - 2} \right)^2} + {y^2} = 4,$$ where $$x$$ and $$y$$ are in meters. The ant starts at the point $$(4, 0)$$ and moves counter $$-$$clockwise with a speed of $$1.57$$ meters per second. The time taken by the ant to reach the point $$(2, 2)$$ is _________ (in seconds).
GATE ME 2015 Set 1
6
Consider a spatial curve in three -dimensional space given in parametric form by $$\,\,x\left( t \right)\,\, = \,\,\cos t,\,\,\,y\left( t \right)\,\, = \,\,\sin t,\,\,\,z\left( t \right)\,\, = \,\,{2 \over \pi }t,\,\,\,0 \le t \le {\pi \over 2}.$$ The length of the curve is ________.
GATE ME 2015 Set 1
7
The value of the integral $$\,\int\limits_0^2 {\int\limits_0^x {{e^{x + y}}\,\,dy} } $$ $$dx$$ is
GATE ME 2014 Set 4
8
A political party orders an arch for the entrance to the ground in which the annual convention is being held. The profile of the arch follows the equation $$y = 2x\,\,\, - 0.1{x^2}$$ where $$y$$ is the height of the arch in meters. The maximum possible height of the arch is
GATE ME 2012
9
The infinite series $${\,f\left( x \right) = x - {{{x^3}} \over {3!}} + {{{x^5}} \over {5!}} - {{{x^7}} \over {7!}} + - - - \,\,}$$ Converges to
GATE ME 2010
10
Let $$\,\,f = {y^x}.$$ What is $$\,\,{{{\partial ^2}f} \over {\partial x\partial y}}\,\,$$ at $$x=2,$$ $$y=1$$?
GATE ME 2008
11
The length of the curve $$\,y = {2 \over 3}{x^{3/2}}$$ between $$x=0$$ & $$x=1$$ is
GATE ME 2008
12
Which of the following integrals is unbounded?
GATE ME 2008
13
Consider the shaded triangular region $$P$$ shown in the figure. What is $$\int\!\!\!\int\limits_p {xy\,dx\,dy\,?} $$ GATE ME 2008 Engineering Mathematics - Calculus Question 44 English
GATE ME 2008
14
If $$\,\,\,y = x + \sqrt {x + \sqrt {x + \sqrt {x + .....\alpha } } } \,\,\,$$ then $$y(2)=$$ __________.
GATE ME 2007
15
$$\mathop {Lim}\limits_{x \to 0} {{{e^x} - \left( {1 + x + {{{x^2}} \over 2}} \right)} \over {{x^3}}} = $$
GATE ME 2007
16
By a change of variables $$x(u, v) = uv,$$ $$\,\,y\left( {u,v} \right) = {v \over u}$$ in a double integral, the integral $$f(x, y)$$ changes to $$\,\,\,f\left( {uv,{\raise0.5ex\hbox{$\scriptstyle v$} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle u$}}} \right).\,\,\,$$ Then $$\,\,\phi \left( {u,v} \right)\,\,\,$$ is ________.
GATE ME 2005
17
The volume of an object expressed in spherical co-ordinates is given by
$$V = \int\limits_0^{2\pi } {\int\limits_0^{{\raise0.5ex\hbox{$\scriptstyle \pi $} \kern-0.1em/\kern-0.15em \lower0.25ex\hbox{$\scriptstyle 3$}}} {\int\limits_0^1 {{r^2}} \,Sin\phi \,drd\phi \,d\theta .} } $$ The value of the integral
GATE ME 2004
EXAM MAP
Medical
NEETAIIMS
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
Staff Selection Commission
SSC CGL Tier I
CBSE
Class 12