1
GATE ME 2013
MCQ (Single Correct Answer)
+2
-0.6
A linear programming problem is shown below.
\eqalign{ & Maximize\,\,\,\,3x + 7y \cr & Subject\,\,to\,\,\,3x + 7y \le 10 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,4x + 6y \le 8 \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,x,\,\,y \ge 0 \cr}

It has ..............

A
an unbounded objective function
B
exactly one optimal solution
C
exactly two optimal solutions
D
infinitely many optimal solutions
2
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The unit worth of resource $${R_2}$$. i.e. dual price of resource $${R_2}$$ in Rs. per $$kg$$ is

A
$$0$$
B
$$1350$$
C
$$1500$$
D
$$2000$$
3
GATE ME 2011
MCQ (Single Correct Answer)
+2
-0.6
One unit of product $${P_1}$$ requires $$3$$ $$kg$$ of resource $${R_1}$$ and $$1$$ $$kg$$ of resource $${R_2}$$. One unit of product $${P_2}$$ requires $$2$$ $$kg$$ of resource $${R_1}$$ and $$2$$ $$kg$$ of resource $${R_2}$$. The profits per unit by selling product $${P_1}$$ and $${P_2}$$ are Rs. $$2000$$ and Rs. $$3000$$ respectively. The manufacturer has $$90$$ $$kg$$ of resource $${R_1}$$ and $$100$$ $$kg$$ of resource $${R_2}$$.

The manufacturer can make a maximum profit of Rs.

A
$$60,000$$
B
$$135,000$$
C
$$150,000$$
D
$$200,000$$
4
GATE ME 2009
MCQ (Single Correct Answer)
+2
-0.6
Consider the following Linear Programming problem $$(LLP)$$

Maximize: $$Z = 3{x_1} + 2{x_2}$$
$$\,\,$$ Subject $$\,\,$$ to
\eqalign{ & \,\,\,\,\,\,\,{x_1} \le 4 \cr & \,\,\,\,\,\,\,{x_2} \le 6 \cr & 3{x_1} + 2{x_2} \le 18 \cr & {x_1} \ge 0,\,\,{x_2} \ge 0 \cr}

A
The $$LPP$$ has a unique optimal solution.
B
The $$LPP$$ is infeasible
C
The $$LPP$$ is unbounded
D
The $$LPP$$ has multiple optimal solutions.
GATE ME Subjects
EXAM MAP
Medical
NEET
Graduate Aptitude Test in Engineering
GATE CSEGATE ECEGATE EEGATE MEGATE CEGATE PIGATE IN
Civil Services
UPSC Civil Service
Defence
NDA
CBSE
Class 12