At the current basic feasible solution (bfs) $v_0 (v_0 \in \mathbb{R}^5)$, the simplex method yields the following form of a linear programming problem in standard form:
minimize $z = -x_1 - 2x_2$
s.t.
$x_3 = 2 + 2x_1 - x_2$
$x_4 = 7 + x_1 - 2x_2$
$x_5 = 3 - x_1$
$x_1, x_2, x_3, x_4, x_5 \geq 0$
Here the objective function is written as a function of the non-basic variables. If the simplex method moves to the adjacent bfs $v_1 (v_1 \in \mathbb{R}^5)$ that best improves the objective function, which of the following represents the objective function at $v_1$, assuming that the objective function is written in the same manner as above?
A manufacturing unit produces two products Pl and P2. For each piece of P1 and P2, the table below provides quantities of materials M1, M2, and M3 required, and also the profit earned. The maximum quantity available per day for M1, M2 and M3 is also provided. The maximum possible profit per day is ₹ ______
M1 | M2 | M3 | Profit per piece ( ₹) | |
---|---|---|---|---|
P1 | 2 | 2 | 0 | 150 |
P2 | 3 | 1 | 2 | 100 |
Maximum quantity available per day | 70 | 50 | 40 |
Subject to $$\,\,\,\,\,\,\,\,\,\,{x_1} + 2{x_2} \le 10,$$
$$\eqalign{ & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1} - {x_2} \le 8, \cr & \,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,{x_1},{x_2} \ge 0 \cr} $$
In the starting simplex tableau, $${x_1}$$ and $${x_2}$$ are non-basic variables and the value of $$Z$$ is zero. The value of $$Z$$ in the next simplex tableau is __________________.